Skip to main content

Advertisement

Log in

PIWIL1 interacting RNA piR-017061 inhibits pancreatic cancer growth via regulating EFNA5

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

PIWI (P element induced wimpy testis) integrating RNAs (piRNAs) are small non-coding RNAs with the length of approximately 30 nucleotides that plays crucial roles in germ cells and adult stem cells. Recently, accumulating data have shown that piRNA and PIWI proteins are involved in tumorigenesis. However, the roles of PIWI proteins and piRNAs in pancreatic cancer are still elusive. Here, we showed that piR-017061 is significantly downregulated in pancreatic cancer patients’ samples and pancreatic cancer cell lines. Furthermore, we studied the function of piR-017061 in pancreatic cancer and our data revealed that piR-017061 inhibits pancreatic cancer cell growth in vitro and in vivo. Moreover, we analyzed the genomic loci around piR-017061 and identified EFNA5 as a novel target of piR-017061. Importantly, our data further revealed a direct binding between piR-017061 and EFNA5 mRNA mediated by PIWIL1. Mechanically, piR-017061 cooperates with PIWIL1 to facilitate EFNA5 mRNA degradation and loss of piR-017061 results in accumulation of EFNA5 which facilitates pancreatic cancer development. Hence, our data provided novel insights into PIWI/piRNA-mediated gene regulation and their function in pancreatic cancer. Since PIWI proteins and piRNA predominately express in germline and cancer cells, our study provided novel therapeutic strategy for pancreatic cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lau NC, et al. Characterization of the piRNA complex from rat testes. Science. 2006;313:363–7. https://doi.org/10.1126/science.1130164.

    Article  CAS  PubMed  Google Scholar 

  2. Grivna ST, Beyret E, Wang Z, Lin HF. A novel class of small RNAs in mouse spermatogenic cells. Gene Dev. 2006;20:1709–14. https://doi.org/10.1101/gad.1434406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grivna ST, Pyhtila B, Lin HF. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A. 2006;103:13415–20. https://doi.org/10.1073/pnas.0605506103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316:744–7. https://doi.org/10.1126/science.1142612.

    Article  CAS  PubMed  Google Scholar 

  5. Yin H, Lin HF. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007;450:304-U316. https://doi.org/10.1038/nature06263.

    Article  CAS  PubMed  Google Scholar 

  6. Liu YM, et al. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer. 2019. https://doi.org/10.1186/s12943-019-1052-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ross RJ, Weiner MM, Lin HF. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505:353–9. https://doi.org/10.1038/nature12987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin HF. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene. 2002;21:3988–99. https://doi.org/10.1038/sj.onc.1205505.

    Article  CAS  PubMed  Google Scholar 

  9. Liu XY, et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer. 2006;118:1922–9. https://doi.org/10.1002/ijc.21575.

    Article  CAS  PubMed  Google Scholar 

  10. Fu A, Jacobs DI, Hoffman AE, Zheng TZ, Zhu Y. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis. 2015;36:1094–102. https://doi.org/10.1093/carcin/bgv105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan LP, et al. PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer. 2019. https://doi.org/10.1186/s12943-019-0940-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Krishnan P, et al. Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget. 2016;7:37944–56. https://doi.org/10.18632/oncotarget.9272.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mai DM, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 2018;8:5213–30. https://doi.org/10.7150/thno.28001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu AL, et al. A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res. 2019;11:3703–20. https://doi.org/10.2147/Cmar.S193266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cordeiro A, et al. PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget. 2016;7:46002–13. https://doi.org/10.18632/oncotarget.10015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yan H, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. 2015;29:196–206. https://doi.org/10.1038/leu.2014.135.

    Article  CAS  PubMed  Google Scholar 

  17. Li BB, et al. piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. 2019a;38:5227–38. https://doi.org/10.1038/s41388-019-0788-4.

    Article  CAS  PubMed  Google Scholar 

  18. Li W, et al. The prognosis value of PIWIL1 and PIWIL2 expression in pancreatic cancer. J Clin Med. 2019b. https://doi.org/10.3390/jcm8091275.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Muller S, et al. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer. 2015;14:94. https://doi.org/10.1186/s12943-015-0358-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buensuceso AV, et al. Ephrin-A5 is required for optimal fertility and a complete ovulatory response to gonadotropins in the female mouse. Endocrinology. 2016;157:942–55. https://doi.org/10.1210/en.2015-1216.

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Chen J, Tang CX, Zhou XY, Gao DS. Inverse expression levels of ephrinA3 and ephrinA5 contribute to dopaminergic differentiation of human SH-SY5Y cells. J Mol Neurosci. 2016;59:483–92. https://doi.org/10.1007/s12031-016-0759-y.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Shiels A. Epha2 and Efna5 participate in lens cell pattern-formation. Differentiation. 2018;102:1–9. https://doi.org/10.1016/j.diff.2018.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao D, et al. Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther. 2004;3:1081–9. https://doi.org/10.4161/cbt.3.11.1175 (discussion 1090–1081).

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, et al. Bcl-3 regulates TGFbeta signaling by stabilizing Smad3 during breast cancer pulmonary metastasis. Cell Death Dis. 2016;7:e2508. https://doi.org/10.1038/cddis.2016.405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin J, et al. piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci. 2017;108:1746–56. https://doi.org/10.1111/cas.13300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen X, et al. USP17 suppresses tumorigenesis and tumor growth through deubiquitinating AEP. Int J Biol Sci. 2019;15:738–48. https://doi.org/10.7150/ijbs.30106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang Z, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102. https://doi.org/10.1093/nar/gkx247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ponten F. A tissue-based map of the human proteome. Scand J Immunol. 2015;81:329–329.

    Article  Google Scholar 

  29. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  30. Kelsen DP, Portenoy R, Thaler H, Tao Y, Brennan M. Pain as a predictor of outcome in patients with operable pancreatic carcinoma. Surgery. 1997;122:53–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 2008;10:58–62. https://doi.org/10.1080/13651820701883148.

    Article  CAS  Google Scholar 

  32. Chen Z, et al. Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer. 2015;15:811. https://doi.org/10.1186/s12885-015-1794-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Litwin M, et al. Aberrant expression of PIWIL1 and PIWIL2 and their clinical significance in ductal breast carcinoma. Anticancer Res. 2018;38:2021–30. https://doi.org/10.21873/anticanres.12441.

    Article  CAS  PubMed  Google Scholar 

  34. Xie K, et al. Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Med. 2018;7:157–66. https://doi.org/10.1002/cam4.1248.

    Article  CAS  PubMed  Google Scholar 

  35. Araujo T, et al. Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World J Gastroenterol. 2018;24:5338–50. https://doi.org/10.3748/wjg.v24.i47.5338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C, et al. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J Biol Chem. 2019;294:9873–87. https://doi.org/10.1074/jbc.RA118.004445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun R, Gao CL, Li DH, Li BJ, Ding YH. Expression status of PIWIL1 as a prognostic marker of colorectal cancer. Dis Markers. 2017;2017:1204937. https://doi.org/10.1155/2017/1204937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Genzor P, Cordts SC, Bokil NV, Haase AD. Aberrant expression of select piRNA-pathway genes does not reactivate piRNA silencing in cancer cells. Proc Natl Acad Sci U S A. 2019;116:11111–2. https://doi.org/10.1073/pnas.1904498116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen S, et al. PIWIL1/piRNA-DQ593109 regulates the permeability of the blood-tumor barrier via the MEG3/miR-330-5p/RUNX3 axis. Mol Ther Nucleic Acids. 2018;10:412–25. https://doi.org/10.1016/j.omtn.2017.12.020.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng J, et al. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 2012;315:12–7. https://doi.org/10.1016/j.canlet.2011.10.004.

    Article  CAS  PubMed  Google Scholar 

  41. Ai L, et al. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Mol Cancer. 2019;18:88. https://doi.org/10.1186/s12943-019-1011-5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Worku T, et al. Regulatory roles of ephrinA5 and its novel signaling pathway in mouse primary granulosa cell apoptosis and proliferation. Cell Cycle. 2018;17:892–902. https://doi.org/10.1080/15384101.2018.1456297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Wang Wang or Xiong-Xiong Lu.

Ethics declarations

Conflict of interest

We declare there is no conflict of interest.

Ethical approval

Involved patients were informed and all procedure related to patient samples and animals were approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiaotong University School of Medicine and followed the Declaration of Helsinki. The approval number issued by the Ethics Committee of Ruijin Hospital is A-2019-016.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Xing, S., Shen, BY. et al. PIWIL1 interacting RNA piR-017061 inhibits pancreatic cancer growth via regulating EFNA5. Human Cell 34, 550–563 (2021). https://doi.org/10.1007/s13577-020-00463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00463-2

Keywords

Navigation