Skip to main content

Advertisement

Log in

Establishment of a bladder cancer cell line expressing both mesenchymal and epithelial lineage-associated markers

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Several experimental models including patient biopsies, animal models, and cell lines have been recommended to study the mechanism of bladder cancer development. After several passages in culture, cell lines lose some original features, and no longer resemble the cells of their original tumor. This makes it necessary to establish various cell lines. In an attempt to establish a new cell line for bladder cancer, JAM-ICR (RRID: CVCL_A9QB) was derived from a 64-year-old man diagnosed with a high-grade tumor. This cell line was characterized in multiple experiments involving morphological studies, immunophenotyping (by immunohistochemistry and flow cytometry), karyotyping, short tandem repeat analysis, colony-forming assays, migration and invasion assays, and chemosensitivity to anti-cancer drugs. JAM-ICR cells are pale with an irregular polygonal shape, and show some similarities to mesenchymal stem cells but with a wider shape and shorter arms. Phenotypic assessment demonstrated the simultaneous expression of mesenchymal—(vimentin, desmin, CD29, CD90, and CD106) and epithelial lineage (pan-cytokeratin) markers, which supports a phenotype similar to epithelial–mesenchymal transition for this cell line. JAM-ICR displayed high metastatic potential and stem-like properties, i.e., self-renewal, colony forming, and the coexpression of TRA-1 with CD44 and CD166. Furthermore, this cell line was significantly more resistant to doxorubicin in comparison to the 5637 cell line. These features make JAM-ICR a new bladder cancer cell line with metastatic potential and stem-like properties, which may be potentially useful as a model to elucidate the molecular and cellular mechanisms of bladder cancer pathogenesis or evaluate new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Richters A, Aben KKH, Kiemeney L. The global burden of urinary bladder cancer: an update. World J Urol. 2019. https://doi.org/10.1007/s00345-019-02984-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rafiemanesh H, Lotfi Z, Bakhtazad S, Ghoncheh M, Salehiniya H. The epidemiological and histological trend of bladder cancer in Iran. J Cancer Res Ther. 2018;14(3):532–6. https://doi.org/10.4103/0973-1482.172134.

    Article  PubMed  Google Scholar 

  3. Griffiths TR. Current perspectives in bladder cancer management. Int J Clin Pract. 2013;67(5):435–48. https://doi.org/10.1111/ijcp.12075.

    Article  CAS  PubMed  Google Scholar 

  4. Moyer VA. Screening for bladder cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2011;155(4):246–51. https://doi.org/10.7326/0003-4819-155-4-201108160-00008.

    Article  PubMed  Google Scholar 

  5. Ghaderi F, Mehdipour F, Hosseini A, Talei A, Ghaderi A. Establishment and characterization of a new triple negative breast cancer cell line from an iranian breast cancer tissue. Asian Pacific J Cancer Prev APJCP. 2019;20(6):1683–9. https://doi.org/10.31557/apjcp.2019.20.6.1683.

    Article  CAS  Google Scholar 

  6. Said N. Establishing and characterization of human and murine bladder cancer organoids. Transl Androl Urol. 2019;8(Suppl 3):S310–3. https://doi.org/10.21037/tau.2019.06.05.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mohammadi Farsani T, Motevaseli E, Neyazi N, Khorramizadeh MR, Zafarvahedian E, Ghahremani MH. Effect of passage number and culture time on the expression and activity of insulin-degrading enzyme in Caco-2 Cells. Iran Biomed J. 2018;22(1):70–5. https://doi.org/10.22034/ibj.22.1.70.

    Article  PubMed  Google Scholar 

  8. Phan VH, Moore MM, McLachlan AJ, Piquette-Miller M, Xu H, Clarke SJ. Ethnic differences in drug metabolism and toxicity from chemotherapy. Exp Opin Drug Metab Toxicol. 2009;5(3):243–57. https://doi.org/10.1517/17425250902800153.

    Article  CAS  Google Scholar 

  9. Hynds RE, Vladimirou E, Janes SM. The secret lives of cancer cell lines. Disease Models Mech. 2018;11(11):dmm037366. https://doi.org/10.1242/dmm.037366.

    Article  CAS  Google Scholar 

  10. Jivrajani M, Shaikh MV, Shrivastava N, Nivsarkar M. An improved and versatile immunosuppression protocol for the development of tumor xenograft in mice. Anticancer Res. 2014;34(12):7177–83.

    PubMed  Google Scholar 

  11. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9. https://doi.org/10.1038/nprot.2006.339.

    Article  CAS  PubMed  Google Scholar 

  12. Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28(31):2796–805. https://doi.org/10.1038/onc.2009.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Staveren WC, Solís DY, Hébrant A, Detours V, Dumont JE, Maenhaut C. Human cancer cell lines: experimental models for cancer cells in situ? For cancer stem cells? Biochem Biophys Acta. 2009;1795(2):92–103. https://doi.org/10.1016/j.bbcan.2008.12.004.

    Article  CAS  PubMed  Google Scholar 

  14. Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? Breast Cancer Res BCR. 2003;5(2):89–95. https://doi.org/10.1186/bcr577.

    Article  PubMed  Google Scholar 

  15. Dutil J, Chen Z, Monteiro AN, Teer JK, Eschrich SA. An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines. Can Res. 2019;79(7):1263–73. https://doi.org/10.1158/0008-5472.can-18-2747.

    Article  CAS  Google Scholar 

  16. Badal S, Campbell KS, Valentine H, Ragin C. The need for cell lines from diverse ethnic backgrounds for prostate cancer research. Nat Rev Urol. 2019;16(12):691–2. https://doi.org/10.1038/s41585-019-0234-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oh SS, Galanter J, Thakur N, Pino-Yanes M, Barcelo NE, White MJ, et al. Diversity in clinical and biomedical research: a promise yet to be fulfilled. PLoS Med. 2015;12(12):e1001918. https://doi.org/10.1371/journal.pmed.1001918.

    Article  PubMed  PubMed Central  Google Scholar 

  18. George S, Duran N, Norris K. A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am J Public Health. 2014;104(2):e16-31. https://doi.org/10.2105/ajph.2013.301706.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giuliano AR, Mokuau N, Hughes C, Tortolero-Luna G, Risendal B, Ho RCS, et al. Participation of minorities in cancer research: the influence of structural, cultural, and linguistic factors. Ann Epidemiol. 2000;10(8 Suppl):S22-34. https://doi.org/10.1016/s1047-2797(00)00195-2.

    Article  CAS  PubMed  Google Scholar 

  20. Guerrero S, López-Cortés A, Indacochea A, García-Cárdenas JM, Zambrano AK, Cabrera-Andrade A, et al. Analysis of racial/ethnic representation in select basic and applied cancer research studies. Sci Rep. 2018;8(1):13978. https://doi.org/10.1038/s41598-018-32264-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson SL, Compton DA. Chromosomes and cancer cells. Chromosome Res Intern J Mol Supramol Evol Aspects Chromosome Biol. 2011;19(3):433–44. https://doi.org/10.1007/s10577-010-9179-y.

    Article  Google Scholar 

  22. Urist MJ, Di Como CJ, Lu ML, Charytonowicz E, Verbel D, Crum CP, et al. Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol. 2002;161(4):1199–206. https://doi.org/10.1016/s0002-9440(10)64396-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang CC, Tsai YC, Jeng YM. Biological significance of GATA3, cytokeratin 20, cytokeratin 5/6 and p53 expression in muscle-invasive bladder cancer. PLoS ONE. 2019;14(8):e0221785. https://doi.org/10.1371/journal.pone.0221785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hashmi AA, Hussain ZF, Irfan M, Edhi MM, Kanwal S, Faridi N, et al. Cytokeratin 5/6 expression in bladder cancer: association with clinicopathologic parameters and prognosis. BMC Res Notes. 2018;11(1):207. https://doi.org/10.1186/s13104-018-3319-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang B. CD73: a novel target for cancer immunotherapy. Can Res. 2010;70(16):6407–11. https://doi.org/10.1158/0008-5472.can-10-1544.

    Article  CAS  Google Scholar 

  26. Senbanjo LT, Chellaiah MA. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Develop Biol. 2017;5:18. https://doi.org/10.3389/fcell.2017.00018.

    Article  Google Scholar 

  27. Fujiwara K, Ohuchida K, Sada M, Horioka K, Ulrich CD 3rd, Shindo K, et al. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells. PLoS ONE. 2014;9(9):e107247. https://doi.org/10.1371/journal.pone.0107247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thapa R, Wilson GD. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Intern. 2016;2016:2087204. https://doi.org/10.1155/2016/2087204.

    Article  CAS  Google Scholar 

  29. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106(33):14016–21. https://doi.org/10.1073/pnas.0906549106.

    Article  PubMed  Google Scholar 

  30. Tomita K, van Bokhoven A, Jansen CF, Kiemeney LA, Karthaus HF, Vriesema J, et al. Activated leukocyte cell adhesion molecule (ALCAM) expression is associated with a poor prognosis for bladder cancer patients. UroOncology. 2003;3(3–4):121–9.

    Article  Google Scholar 

  31. Wright AJ, Andrews PW. Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Res. 2009;3(1):3–11. https://doi.org/10.1016/j.scr.2009.04.001.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Bhanja A, Bhattacharyya J, Jaganathan BG. Multiple roles of CD90 in cancer. Tumour Biol J Intern Soc Oncodevelop Biol Med. 2016;37(9):11611–22. https://doi.org/10.1007/s13277-016-5112-0.

    Article  CAS  Google Scholar 

  33. Vassilopoulos A, Chisholm C, Lahusen T, Zheng H, Deng CX. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477–82. https://doi.org/10.1038/onc.2013.516.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Yuan B, Zhang H, Li H. Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance. Oncol lett. 2019;17(6):5351–60. https://doi.org/10.3892/ol.2019.10221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci CMLS. 2011;68(18):3033–46. https://doi.org/10.1007/s00018-011-0735-1.

    Article  CAS  PubMed  Google Scholar 

  36. Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10(2):52. https://doi.org/10.3390/cancers10020052.

    Article  CAS  PubMed Central  Google Scholar 

  37. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellmunt J, Petrylak DP. New therapeutic challenges in advanced bladder cancer. Semin Oncol. 2012;39(5):598–607. https://doi.org/10.1053/j.seminoncol.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  39. Kim WJ, Kakehi Y, Yoshida O. Multifactorial involvement of multidrug resistance-associated [correction of resistance] protein, DNA topoisomerase II and glutathione/glutathione-S-transferase in nonP-glycoprotein-mediated multidrug resistance in human bladder cancer cells. Intern J Urol Off J Japan Urolog Assoc. 1997;4(6):583–90. https://doi.org/10.1111/j.1442-2042.1997.tb00314.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Grant number 97-17841 from Shiraz University of Medical Sciences, and in part by Shiraz Institute for Cancer Research Grant number ICR-100-508. We thank K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghaderi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareinejad, M., Faghih, Z., Ariafar, A. et al. Establishment of a bladder cancer cell line expressing both mesenchymal and epithelial lineage-associated markers. Human Cell 34, 675–687 (2021). https://doi.org/10.1007/s13577-020-00456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00456-1

Keywords

Navigation