Skip to main content
Log in

Molecular characteristics associated with ferroptosis in hepatocellular carcinoma progression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the genes associated with ferroptosis and the progression of hepatocellular carcinoma (HCC). The RNA sequencing data of erastin-induced ferroptosis in HCC cells were downloaded from the Sequence Read Archive database with accession number SRP119173. The microarray dataset GSE89377 of HCC progression was downloaded from the Gene Expression Omnibus database. The ferroptosis-related genes were screened by differential analysis and HCC progression-related genes were screened by cluster analysis using Mfuzz. Then, the genes associated with ferroptosis and HCC progression were screened by Venn analysis, followed by functional enrichment, protein–protein interaction (PPI) analysis, and transcription factor (TF) prediction. Finally, survival analysis was performed using data from the Cancer Genome Atlas database. A total of 33 upregulated and 52 downregulated genes associated with HCC progression and ferroptosis were obtained, and these genes were significantly involved in the negative regulation of ERK1 and ERK2 cascades; the NAD biosynthetic process; alanine, aspartate, and glutamate metabolism; and other pathways. The PPI network contained 52 genes and 78 interactions, of which, cell division cycle 20 (CDC20) and heat shock protein family B (small) member 1 (HSPB1) were hub genes found in higher degrees. Among the 85 genes associated with HCC progression and ferroptosis, two TFs (activating TF 3 (ATF3) and HLF) were predicted, with HSPB1 targeted by ATF3. In addition, 26 genes that were found to be significantly correlated with the overall survival of HCC patients were screened, including CDC20 and thyroid hormone receptor interactor 13. Several genes associated with HCC progression and ferroptosis were screened based on a comprehensive bioinformatics analysis. These genes played roles in HCC progression and ferroptosis via the negative regulation of the ERK1 and ERK2 cascades; the NAD biosynthetic process; and alanine, aspartate, and glutamate metabolism. ATF3 and HSPB1 played important roles in HCC progression and ferroptosis, with HSPB1 possibly regulated by ATF3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are not publicly available but obtained from corresponding authors on reasonable request.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radical Biol Med. 2019;133:130–43.

    CAS  Google Scholar 

  3. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 2017;21:648–57.

    CAS  PubMed  Google Scholar 

  5. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30:e1704007.

    PubMed  PubMed Central  Google Scholar 

  6. Hassannia B, Vandenabeele P, Vanden-Berghe T. Targeting ferroptosis to iron out cancer. Cancer cell. 2019;35:830–49.

    CAS  PubMed  Google Scholar 

  7. Liang C, Zhang X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31:e1904197.

    PubMed  Google Scholar 

  8. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380:1450–62.

    CAS  PubMed  Google Scholar 

  9. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol. 2016;25:74–85.

    PubMed  Google Scholar 

  10. Keating GM. Sorafenib: a review in hepatocellular carcinoma. Target Oncol. 2017;12:243–53.

    PubMed  Google Scholar 

  11. Dank M, Padányi P. Systemic treatment options of primary hepatocellular carcinoma. Magyar Onkol. 2018;62:53–61.

    Google Scholar 

  12. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, Chauffert B, Galmiche A. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 2014;34:6417–22.

    CAS  PubMed  Google Scholar 

  13. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356:971–7.

    CAS  PubMed  Google Scholar 

  14. Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 2016;478:838–44.

    CAS  PubMed  Google Scholar 

  15. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatol (Baltim, Md). 2016;64:488–500.

    CAS  Google Scholar 

  17. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatol (Baltim, Md). 2016;63:173–84.

    CAS  Google Scholar 

  18. Zhang X, Du L, Qiao Y, Zhang X, Zheng W, Wu Q, Chen Y, Zhu G, Liu Y, Bian Z, Guo S, Yang Y, Ma L, Yu Y, Pan Q, Sun F, Wang J. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 2019;24:101211.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 2015;12:357–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell-Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García-Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–73.

    CAS  PubMed  Google Scholar 

  21. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinf (Oxf, Engl). 2014;30:923–30.

    CAS  Google Scholar 

  22. Smyth GK, limma: Linear models for microarray data, bioinformatics & computational biology solutions using R & Bioconductor; 2011. pp. 397–420.

  23. Kumar L, Mfuzz EF. a software package for soft clustering of microarray data. Bioinformation. 2007;2:5–7.

    PubMed  PubMed Central  Google Scholar 

  24. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 2009;4:44–57.

    CAS  Google Scholar 

  25. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    CAS  PubMed  Google Scholar 

  26. Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, Wilson JR, Shanbhag SM, Chen MY, Arai AE. MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. J Cardiovasc Magn Res. 2012;14:83.

    Google Scholar 

  27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tyner C, Barber GP, Casper J, Clawson H, Diekhans M, Eisenhart C, Fischer CM, Gibson D, Gonzalez JN, Guruvadoo L, Haeussler M, Heitner S, Hinrichs AS, Karolchik D, Lee BT, Genome The UCSC. The UCSC Genome Browser database: 2017 update. Nucleic Acid Res. 2017;45:D626–34.

    CAS  PubMed  Google Scholar 

  29. Schott C, Graab U, Cuvelier N, Hahn H, Fulda S. Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front Oncol. 2015;5:131.

    PubMed  PubMed Central  Google Scholar 

  30. Yagoda N, Von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2017;447:865–9.

    Google Scholar 

  31. Hou L, Huang R, Sun F, Zhang L, Wang Q. NADPH oxidase regulates paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis. Toxicology. 2019;417:64–73.

    CAS  PubMed  Google Scholar 

  32. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Tao X, Jin G, Jin H, Wang N, Hu F, Luo Q, Shu H, Zhao F, Yao M, Fang J, Cong W, Qin W, Wang C. A Targetable Molecular Chaperone Hsp27 confers aggressiveness in hepatocellular carcinoma. Theranostics. 2016;6:558–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eto D, Hisaka T, Horiuchi H, Uchida S, Akagi Y. Expression of HSP27 in hepatocellular carcinoma. Anticancer Res. 2016;36:3775–9.

    CAS  PubMed  Google Scholar 

  35. Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L, Tang D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34:5617–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun. 2016;480:443–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Distéfano AM, Martin MV. Heat stress induces ferroptosis-like cell death in plants. J Cell Biol. 2017;216:463–76.

    PubMed  PubMed Central  Google Scholar 

  38. Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, Chen T, Li H, Yao M, Li J. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. J Exp Clin Cancer Res. 2018;37:263.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Weng S, Zhou L, Deng Q, Wang J, Yu Y, Zhu J, Yuan Y. Niclosamide induced cell apoptosis via upregulation of ATF3 and activation of PERK in hepatocellular carcinoma cells. BMC gastroenterology. 2016;16:25.

    PubMed  PubMed Central  Google Scholar 

  40. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X, Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ. 2020;27:662–75.

    CAS  PubMed  Google Scholar 

  41. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci. 2003;23:5187–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Gao JZ, Du JL, Huang ZX, Wei LX. Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol. 2014;45:1547–55.

    CAS  PubMed  Google Scholar 

  43. Zhu MX, Wei CY, Zhang PF, Gao DM, Chen J, Zhao Y, Dong SS, Liu BB. Elevated TRIP13 drives the AKT/mTOR pathway to induce the progression of hepatocellular carcinoma via interacting with ACTN4. J Exp Clin Cancer Res. 2019;38:409.

    PubMed  PubMed Central  Google Scholar 

  44. Ju L, Li X, Shao J, Lu R, Wang Y, Bian Z. Upregulation of thyroid hormone receptor interactor 13 is associated with human hepatocellular carcinoma. Oncol Rep. 2018;40:3794–802.

    CAS  PubMed  Google Scholar 

  45. Zhuang L, Yang Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int. 2018;2018:7897346.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the database available to us for this study.

Funding

This work was supported by the Zhejiang Medical and Health Technology Projects (No. 2020KY300).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conception and design of the study; conceived the manuscript: HS and YX; wrote the paper: HS, YX and ZJ; processed the data: YL and ZF; drew figures: ZJ; all authors read and approved the paper.

Corresponding author

Correspondence to Han Shuwen.

Ethics declarations

Conflict of interests

The authors declare that no conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1.

Venn diagram shows the DEGs in chronic hepatitis vs. normal, cirrhosis vs. normal, and HCC vs. normal groups (TIFF 477 kb)

Supplementary material 2 (DOC 36 kb)

Supplemental Table 2.

Obtained clean reads from the SRP119173 dataset (XLS 18 kb)

Supplemental Table 3.

DEGs in erastin vs. control, and in ferrostatin vs. erastin groups (XLS 988 kb)

Supplemental Table 4.

DEGs in chronic hepatitis vs. normal, cirrhosis vs. normal, and HCC vs. normal groups (XLS 610 kb)

Supplemental Table 5.

Upregulated and downregulated HCC progression-related genes (XLS 69 kb)

Supplemental Table 6.

The 26 genes correlated with the prognosis of patients with HCC (XLS 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Lijuan, Y., Jing, Z. et al. Molecular characteristics associated with ferroptosis in hepatocellular carcinoma progression. Human Cell 34, 177–186 (2021). https://doi.org/10.1007/s13577-020-00431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00431-w

Keywords

Navigation