Skip to main content
Log in

LncRNA TUG1 regulates the balance of HuR and miR-29b-3p and inhibits intestinal epithelial cell apoptosis in a mouse model of ulcerative colitis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

This study aimed to investigate the role of long non-coding RNA (lncRNA) taurine up-regulated 1 (TUG1) in the development of ulcerative colitis (UC) and to explore the underlying mechanisms. A murine model of UC was induced by dextran sodium sulfate (DSS) exposure. The colonic epithelial YAMC cells were treated with TNF-α to simulate the inflammatory environment of intestinal epithelial cells (IECs). RNA pull-down and RIP assays were performed to analyze the interaction between TUG1 and HuR. Luciferase activity assay was conducted to evaluate the interaction between TUG1 and miR-29b-3p. Cell proliferation was evaluated by MTT assay. Cell apoptosis was assessed by flow cytometry and western blot analysis of apoptosis-related proteins. TUG1 overexpression promoted cell proliferation and inhibited cell apoptosis in the TNF-α-stimulated YAMC cells. The mechanistic analysis showed that TUG1 positively regulated the HuR/c-myc axis via its interaction with HuR, leading to upregulation of c-myc expression; meanwhile, TUG1 negatively regulated the miR-29b-3p/CDK2 signaling via binding to miR-29b-3p, leading to derepression of CDK2 expression. Further animal experiments showed that TUG1 overexpression attenuated UC progression in the DSS-induced UC in mice. Collectively, TUG1 inhibits IEC apoptosis and UC progression by regulating the balance of HuR and miR-29b-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018;30(1):1–10. https://doi.org/10.1515/jbcpp-2018-0036.

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, He L, Zhang J, Ouyang C, Wu X, Lu F, et al. Clinical, laboratory, endoscopical and histological characteristics predict severe ulcerative colitis. Hepatogastroenterology. 2013;60(122):318–23. https://doi.org/10.5754/hge12607.

    Article  PubMed  Google Scholar 

  3. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78. https://doi.org/10.1056/NEJMra0804647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ren MT, Gu ML, Zhou XX, Yu MS, Pan HH, Ji F, et al. Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis. World J Gastroenterol. 2019;25(38):5800–13. https://doi.org/10.3748/wjg.v25.i38.5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu F, Huang Y, Dong F, Kwon JH. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis. 2016;22(4):782–95. https://doi.org/10.1097/mib.0000000000000691.

    Article  PubMed  Google Scholar 

  6. Lv B, Liu Z, Wang S, Liu F, Yang X, Hou J, et al. MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1. Int J Clin Exp Pathol. 2014;7(12):8542–52.

    PubMed  PubMed Central  Google Scholar 

  7. Andrews C, McLean MH, Durum SK. Cytokine tuning of intestinal epithelial function. Front Immunol. 2018;9:1270. https://doi.org/10.3389/fimmu.2018.01270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujimoto K, Kinoshita M, Tanaka H, Okuzaki D, Shimada Y, Kayama H, et al. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol. 2017;10(2):446–59. https://doi.org/10.1038/mi.2016.58.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao L, Wang JY. RNA-binding proteins and microRNAs in gastrointestinal epithelial homeostasis and diseases. Curr Opin Pharmacol. 2014;19:46–53. https://doi.org/10.1016/j.coph.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao L, Rao JN, Zou T, Liu L, Cao S, Martindale JL, et al. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell. 2013;24(19):3038–46. https://doi.org/10.1091/mbc.E13-05-0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen SW, Wang PY, Liu YC, Sun L, Zhu J, Zuo S, et al. Effect of long noncoding RNA H19 overexpression on intestinal barrier function and its potential role in the pathogenesis of ulcerative colitis. Inflamm Bowel Dis. 2016;22(11):2582–92. https://doi.org/10.1097/mib.0000000000000932.

    Article  PubMed  Google Scholar 

  12. Ding G, Ming Y, Zhang Y. lncRNA Mirt2 is downregulated in ulcerative colitis and regulates IL-22 expression and apoptosis in colonic epithelial cells. Gastroenterol Res Practice. 2019;2019:8154692. https://doi.org/10.1155/2019/8154692.

    Article  Google Scholar 

  13. Qiao C, Yang L, Wan J, Liu X, Pang C, You W, et al. Long noncoding RNA ANRIL contributes to the development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-κB pathway. Biochem Biophys Res Commun. 2019;508(1):217–24. https://doi.org/10.1016/j.bbrc.2018.11.100.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol. 2018;33:6–15. https://doi.org/10.1016/j.carpath.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  15. Lei X, Zhang L, Li Z, Ren J. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Dev Therapy. 2018;12:2785–93. https://doi.org/10.2147/dddt.s166525.

    Article  CAS  Google Scholar 

  16. Tian L, Zhao ZF, Xie L, Zhu JP. Taurine up-regulated 1 accelerates tumorigenesis of colon cancer by regulating miR-26a-5p/MMP14/p38 MAPK/Hsp27 axis in vitro and in vivo. Life Sci. 2019;239:117035. https://doi.org/10.1016/j.lfs.2019.117035.

    Article  CAS  PubMed  Google Scholar 

  17. Carelli S, Giallongo T, Rey F, Latorre E, Bordoni M, Mazzucchelli S, et al. HuR interacts with lincBRN1a and lincBRN1b during neuronal stem cells differentiation. RNA Biol. 2019;16(10):1471–85. https://doi.org/10.1080/15476286.2019.1637698.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kojima K, Musch MW, Ren H, Boone DL, Hendrickson BA, Ma A, et al. Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells. Gastroenterology. 2003;124(5):1395–407. https://doi.org/10.1016/s0016-5085(03)00215-4.

    Article  CAS  PubMed  Google Scholar 

  19. Wu D, Wu K, Zhu Q, Xiao W, Shan Q, Yan Z et al. Formononetin administration ameliorates dextran sulfate sodium-induced acute colitis by inhibiting NLRP3 Inflammasome Signaling Pathway. 2018:3048532. doi: 10.1155/2018/3048532.

  20. Yue P, Jing L, Zhao X, Zhu H, Teng J. Down-regulation of taurine-up-regulated gene 1 attenuates inflammation by sponging miR-9-5p via targeting NF-κB1/p50 in multiple sclerosis. Life Sci. 2019;233:116731. https://doi.org/10.1016/j.lfs.2019.116731.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17(1):106–16. https://doi.org/10.1093/bib/bbv031.

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, et al. LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res. 2016;44(5):2378–92. https://doi.org/10.1093/nar/gkw017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Hu X, Kuang J, Liao J, Yuan Q. LncRNA DRAIC inhibits proliferation and metastasis of gastric cancer cells through interfering with NFRKB deubiquitination mediated by UCHL5. Cell Mol Biol Lett. 2020;25:29. https://doi.org/10.1186/s11658-020-00221-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Q, Wang T, Huang S, Zuo Q, Jiang Z, Yang N, et al. LncRNA MALAT1 affects the migration and invasion of trophoblast cells by regulating FOS expression in early-onset preeclampsia. Pregnancy Hypertension. 2020;21:50–7. https://doi.org/10.1016/j.preghy.2020.05.001.

    Article  CAS  PubMed  Google Scholar 

  25. Luo Y, Fang Z, Ling Y, Luo W (2019) LncRNA-H19 acts as a ceRNA to regulate HE4 expression by sponging miR-140 in human umbilical vein endothelial cells under hyperglycemia with or without α-Mangostin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 118:109256. doi: 10.1016/j.biopha.2019.109256.

  26. Jia Z, Peng J, Yang Z, Chen J, Liu L, Luo D, et al. Long non-coding RNA TP73-AS1 promotes colorectal cancer proliferation by acting as a ceRNA for miR-103 to regulate PTEN expression. Gene. 2019;685:222–9. https://doi.org/10.1016/j.gene.2018.11.072.

    Article  CAS  PubMed  Google Scholar 

  27. Yi L, Ouyang L, Wang S, Li SS, Yang XM. Long noncoding RNA PTPRG-AS1 acts as a microRNA-194-3p sponge to regulate radiosensitivity and metastasis of nasopharyngeal carcinoma cells via PRC1. J Cell Physiol. 2019;234(10):19088–102. https://doi.org/10.1002/jcp.28547.

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Tang L, Zhang Z, Li S, Liang S, Ji L et al. (2018) Long Noncoding RNA TUG1/miR-29c Axis Affects Cell Proliferation, Invasion, and Migration in Human Pancreatic Cancer. Dis Markers. 2018:6857042-. doi: 10.1155/2018/6857042.

  29. Lei H, Gao Y, Xu X. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin. 2017;49(7):588–97. https://doi.org/10.1093/abbs/gmx047.

    Article  CAS  PubMed  Google Scholar 

  30. Han J, Li Y, Zhang B, Liu H, Wu M, Zhang X. lncRNA TUG1 regulates ulcerative colitis through miR-142-5p/SOCS1 axis. Microb Pathog. 2020;143:104139. https://doi.org/10.1016/j.micpath.2020.104139.

    Article  CAS  PubMed  Google Scholar 

  31. Charan J, Kantharia ND. How to calculate sample size in animal studies? Journal Pharmacol Pharmacotherapeutics. 2013;4(4):303–6. https://doi.org/10.4103/0976-500x.119726.

    Article  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Nos. 81800471, 81974065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xu or Miao Ouyang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1. (A) Relative TUG1 expression in YAMC cells transfected with si-NC, si-TUG1-1, si-TUG1-2, and si-TUG1-3 was examined by qRT-PCR analysis. (B) Relative HuR expression in YAMC cells transfected with si-NC, si-HuR-1, si-HuR-2, and si-HuR-3 was examined by qRT-PCR analysis. (C) TUG1 expression in the intestine after injection of LV-TUG1 as compared to LV-Ctrl (n=6 per group). **P<0.01, vs. si-NC or LV-Ctrl. Data represent the mean ± standard deviation from three independent experiments

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, Y., Li, F. et al. LncRNA TUG1 regulates the balance of HuR and miR-29b-3p and inhibits intestinal epithelial cell apoptosis in a mouse model of ulcerative colitis. Human Cell 34, 37–48 (2021). https://doi.org/10.1007/s13577-020-00428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00428-5

Keywords

Navigation