Skip to main content

Advertisement

Log in

Schlafen 12 mediates the effects of butyrate and repetitive mechanical deformation on intestinal epithelial differentiation in human Caco-2 intestinal epithelial cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Intestinal epithelial differentiation may be stimulated by diverse pathways including luminal short-chain fatty acids and repetitive mechanical deformation engendered by villous motility and peristalsis. Schlafen 12 (SLFN12) is a cytosolic protein that stimulates sucrase-isomaltase (SI) expression. We hypothesized that two disparate differentiating stimuli, butyrate and repetitive deformation, would each stimulate SLFN12 expression in human Caco-2 intestinal epithelial cells and that increased SLFN12 expression would contribute to the differentiating activity of the human Caco-2 intestinal epithelial cells. We stimulated Caco-2 cells with 1–2 mM butyrate or repetitive mechanical deformation at 10 cycles/min at an average 10% strain, and measured SLFN12 and SI expression by qRT-PCR. Sodium butyrate enhanced SLFN12 expression at both 1 mM and 2 mM although SI expression was only significantly increased at 2 mM. Repetitive deformation induced by cyclic mechanical strain also significantly increased both SLFN12 and SI gene expression. Reducing SLFN12 by siRNA decreased basal, deformation-stimulated, and butyrate-stimulated SLFN12 levels, compared to control cells treated with non-targeting siRNA, although both deformation and butyrate were still able to stimulate SLFN12 expression in siRNA-treated cells compared to control cells treated with the same siRNA. This attenuation of the increase in SLFN12 expression in response to mechanical strain or butyrate was accompanied by parallel attenuation of SI expression. Butyrate stimulated SI-promoter activity, and reducing SLFN12 by siRNA attenuated butyrate-induced SI-promoter activity. These data suggest that SLFN12 mediates at least in part the stimulation by both butyrate and repetitive mechanical deformation of sucrase-isomaltase, a late stage differentiation marker in human intestinal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turowski GA, Rashid Z, Hong F, Madri JA, Basson MD. Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res. 1994;54(22):5974–80.

    CAS  PubMed  Google Scholar 

  2. Rhoads JM, Argenzio RA, Chen W, Rippe RA, Westwick JK, Cox AD, et al. L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol. 1997;272(5 Pt 1):G943-53.

    PubMed  Google Scholar 

  3. Chaturvedi LS, Basson MD. Glucagonlike peptide 2 analogue teduglutide: stimulation of proliferation but reduction of differentiation in human Caco-2 intestinal epithelial cells. JAMA Surg. 2013;148(11):1037–42. https://doi.org/10.1001/jamasurg.2013.3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan L, Yu Y, Sanders MA, Majumdar AP, Basson MD. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G994–1003. https://doi.org/10.1152/ajpgi.00517.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu F, Zhou P, Wang Q, Zhang M, Li D. The Schlafen family: complex roles in different cell types and virus replication. Cell Biol Int. 2017. https://doi.org/10.1002/cbin.10778.

    Article  PubMed  Google Scholar 

  6. Kovalenko PL, Basson MD. Schlafen 12 expression modulates prostate cancer cell differentiation. J Surg Res. 2014;190(1):177–84. https://doi.org/10.1016/j.jss.2014.03.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basson MD, Wang Q, Chaturvedi LS, More S, Vomhof-DeKrey EE, Al-Marsoummi S, et al. Schlafen12 interaction with SerpinB12 and deubiquitylases drives human enterocyte differentiation. Cell Physiol Biochem 48:1274–1290

  8. Emenaker NJ, Basson MD. Short chain fatty acids inhibit human (SW1116) colon cancer cell invasion by reducing urokinase plasminogen activator activity and stimulating TIMP-1 and TIMP-2 activities, rather than via MMP modulation. J Surg Res. 1998;76(1):41–6. https://doi.org/10.1006/jsre.1998.5279.

    Article  CAS  PubMed  Google Scholar 

  9. Basson MD, Emenaker NJ, Hong F. Differential modulation of human (Caco-2) colon cancer cell line phenotype by short chain fatty acids. Proc Soc Exp Biol Med. 1998;217(4):476–83.

    Article  CAS  Google Scholar 

  10. Basson MD, Sgambati SA. Effects of short-chain fatty acids on human rectosigmoid mucosal colonocyte brush-border enzymes. Metabolism. 1998;47(2):133–4.

    Article  CAS  Google Scholar 

  11. <<bib id="bib11">Basson MD, Li GD, Hong F, Han O, Sumpio BE. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J Cell Physiol. 1996;168(2):476–88. https://doi.org/10.1002/(SICI)1097-4652(199608)168:2%3C476::AID-JCP26%3E3.0.CO;2-%23

    Article  CAS  PubMed  Google Scholar 

  12. Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal. 2009;21(8):1237–44. https://doi.org/10.1016/j.cellsig.2009.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peterson MD, Mooseker MS. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992;102(Pt 3):581–600.

    CAS  PubMed  Google Scholar 

  14. Peterson MD, Bement WM, Mooseker MS. An in vitro model for the analysis of intestinal brush border assembly. II. Changes in expression and localization of brush border proteins during cell contact-induced brush border assembly in Caco-2BBe cells. J Cell Sci. 1993;105(Pt 2):461–72.

    CAS  PubMed  Google Scholar 

  15. Han O, Li GD, Sumpio BE, Basson MD. Strain induces Caco-2 intestinal epithelial proliferation and differentiation via PKC and tyrosine kinase signals. Am J Physiol. 1998;275(3 Pt 1):G534-41.

    PubMed  Google Scholar 

  16. Froehlich JM, Patak MA, von Weymarn C, Juli CF, Zollikofer CL, Wentz KU. Small bowel motility assessment with magnetic resonance imaging. J Magn Reson Imaging. 2005;21(4):370–5. https://doi.org/10.1002/jmri.20284.

    Article  PubMed  Google Scholar 

  17. Womack WA, Barrowman JA, Graham WH, Benoit JN, Kvietys PR, Granger DN. Quantitative assessment of villous motility. Am J Physiol. 1987;252(2 Pt 1):G250-6.

    PubMed  Google Scholar 

  18. Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J. 2003;17(8):926–8. https://doi.org/10.1096/fj.02-0663fje.

    Article  CAS  PubMed  Google Scholar 

  19. Chaturvedi L, Sun K, Walsh MF, Kuhn LA, Basson MD. The P-loop region of Schlafen 3 acts within the cytosol to induce differentiation of human Caco-2 intestinal epithelial cells. Biochim Biophys Acta. 2014;1843(12):3029–37. https://doi.org/10.1016/j.bbamcr.2014.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orchel A, Dzierzewicz Z, Parfiniewicz B, Weglarz L, Wilczok T. Butyrate-induced differentiation of colon cancer cells is PKC and JNK dependent. Dig Dis Sci. 2005;50(3):490–8.

    Article  CAS  Google Scholar 

  21. Basson MD, Wang Q, Chaturvedi LS, More S, Vomhof-DeKrey EE, Al-Marsoummi S, et al. Schlafen 12 Interaction with SerpinB12 and deubiquitylases drives human enterocyte differentiation. Cell Physiol Biochem. 2018;48(3):1274–90. https://doi.org/10.1159/000492019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tung J, Markowitz AJ, Silberg DG, Traber PG. Developmental expression of SI is regulated in transgenic mice by an evolutionarily conserved promoter. Am J Physiol. 1997;273(1 Pt 1):G83–92.

    CAS  PubMed  Google Scholar 

  23. Perdikis DA, Basson MD. Basal nutrition promotes human intestinal epithelial (Caco-2) proliferation, brush border enzyme activity, and motility. Crit Care Med. 1997;25(1):159–65.

    Article  CAS  Google Scholar 

  24. Basson MD, Liu YW, Hanly AM, Emenaker NJ, Shenoy SG, Gould Rothberg BE. Identification and comparative analysis of human colonocyte short-chain fatty acid response genes. J Gastrointest Surg. 2000;4(5):501–12.

    Article  CAS  Google Scholar 

  25. Lawrence J, Cameron D, Argyle D. Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci. 2015;370(1673). https://doi.org/10.1098/rstb.2014.0233.

  26. Yamasaki K, Enokida T, Taguchi K, Miyamura S, Kawai A, Miyamoto S, et al. Species differences in the binding of sodium 4-phenylbutyrate to serum albumin. J Pharm Sci. 2017;106(9):2860–7. https://doi.org/10.1016/j.xphs.2017.04.025.

    Article  CAS  PubMed  Google Scholar 

  27. Moggs J, Moulin P, Pognan F, Brees D, Leonard M, Busch S, et al. Investigative safety science as a competitive advantage for Pharma. Expert Opin Drug Metab Toxicol. 2012;8(9):1071–82. https://doi.org/10.1517/17425255.2012.693914.

    Article  CAS  PubMed  Google Scholar 

  28. Zweibaum A, Triadou N, Kedinger M, Augeron C, Robine-Leon S, Pinto M, et al. Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer. 1983;32(4):407–12.

    Article  CAS  Google Scholar 

  29. Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, et al. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci. 1994;107(Pt 1):213–25.

    CAS  PubMed  Google Scholar 

  30. Yang B, Cao L, Liu B, McCaig CD, Pu J. The transition from proliferation to differentiation in colorectal cancer is regulated by the calcium activated chloride channel A1. PLoS One. 2013;8(4):e60861. https://doi.org/10.1371/journal.pone.0060861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauri HP, Sterchi EE, Bienz D, Fransen JA, Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985;101(3):838–51.

    Article  CAS  Google Scholar 

  32. Traber PG, Wu GD, Wang W. Novel DNA-binding proteins regulate intestine-specific transcription of the sucrase-isomaltase gene. Mol Cell Biol. 1992;12(8):3614–27.

    Article  CAS  Google Scholar 

  33. Traber PG, Yu L, Wu GD, Judge TA. Sucrase-isomaltase gene expression along crypt-villus axis of human small intestine is regulated at level of mRNA abundance. Am J Physiol. 1992;262(1 Pt 1):G123-30.

    PubMed  Google Scholar 

  34. Markowitz AJ, Wu GD, Bader A, Cui Z, Chen L, Traber PG. Regulation of lineage-specific transcription of the sucrase-isomaltase gene in transgenic mice and cell lines. Am J Physiol. 1995;269(6 Pt 1):G925-39.

    PubMed  Google Scholar 

  35. Hecht A, Torbey CF, Korsmo HA, Olsen WA. Regulation of sucrase and lactase in developing rats: role of nuclear factors that bind to two gene regulatory elements. Gastroenterology. 1997;112(3):803–12.

    Article  CAS  Google Scholar 

  36. Kishi K, Takase S, Goda T. Enhancement of sucrase-isomaltase gene expression induced by luminally administered fructose in rat jejunum. J Nutr Biochem. 1999;10(1):8–12.

    Article  CAS  Google Scholar 

  37. Petersen YM, Elnif J, Schmidt M, Sangild PT. Glucagon-like peptide 2 enhances maltase-glucoamylase and sucrase-isomaltase gene expression and activity in parenterally fed premature neonatal piglets. Pediatr Res. 2002;52(4):498–503. https://doi.org/10.1203/00006450-200210000-00007.

    Article  CAS  PubMed  Google Scholar 

  38. Pacheco II, Macleod RJ. CaSR stimulates secretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G748-59. https://doi.org/10.1152/ajpgi.00560.2007.

    Article  CAS  PubMed  Google Scholar 

  39. Roostaee A, Guezguez A, Beausejour M, Simoneau A, Vachon PH, Levy E, et al. Histone deacetylase inhibition impairs normal intestinal cell proliferation and promotes specific gene expression. J Cell Biochem. 2015;116(11):2695–708. https://doi.org/10.1002/jcb.25274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Wang X, Hernandez A, Kim S, Evers BM. Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT29 and Caco-2 intestinal cell differentiation. Gastroenterology. 2001;120(6):1381–92.

    Article  CAS  Google Scholar 

  41. Malago JJ, Koninkx JF, Douma PM, Dirkzwager A, Veldman A, Hendriks HG, et al. Differential modulation of enterocyte-like Caco-2 cells after exposure to short-chain fatty acids. Food Addit Contam. 2003;20(5):427–37. https://doi.org/10.1080/0265203031000137728.

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi J, Ogihara K, Naya Y, Kimura F, Itoh M, Iwama Y, et al. An in vitro assay system for antihyperlipidemic agents by evaluating lipoprotein profiles from human intestinal epithelium-like cells. 3 Biotech. 2013;3(3):213–8. https://doi.org/10.1007/s13205-012-0085-1.

    Article  PubMed  Google Scholar 

  43. Graz CJ, Cowley HM. Energy state in HT-29 cells is linked to differentiation. In Vitro Cell Dev Biol Anim. 1997;33(4):277–81.

    Article  CAS  Google Scholar 

  44. Schwarz DA, Katayama CD, Hedrick SM. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity. 1998;9(5):657–68.

    Article  CAS  Google Scholar 

  45. Puck A, Aigner R, Modak M, Cejka P, Blaas D, Stockl J. Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol. 2015;5:23–32. https://doi.org/10.1016/j.rinim.2015.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Zuylen WJ, Garceau V, Idris A, Schroder K, Irvine KM, Lattin JE, et al. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One. 2011;6(1):e15723. https://doi.org/10.1371/journal.pone.0015723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kovalenko PL, Basson MD. The correlation between the expression of differentiation markers in rat small intestinal mucosa and the transcript levels of schlafen 3. JAMA Surg. 2013;148(11):1013–9. https://doi.org/10.1001/jamasurg.2013.3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel VB, Yu Y, Das JK, Patel BB, Majumdar AP. Schlafen-3: a novel regulator of intestinal differentiation. Biochem Biophys Res Commun. 2009;388(4):752–6. https://doi.org/10.1016/j.bbrc.2009.08.094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walsh MF, Hermann R, Sun K, Basson MD. Schlafen 3 changes during rat intestinal maturation. Am J Surg. 2012;204(5):598–601. https://doi.org/10.1016/j.amjsurg.2012.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh MF, Hermann R, Lee JH, Chaturvedi L, Basson MD. Schlafen 3 mediates the differentiating effects of Cdx2 in Rat IEC-Cdx2L1 enterocytes. J Invest Surg. 2015;28(4):202–7.

    Article  Google Scholar 

  51. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92(15):1210–6.

    Article  CAS  Google Scholar 

  52. Owen CR, Yuan L, Basson MD. Smad3 knockout mice exhibit impaired intestinal mucosal healing. Lab Invest. 2008;88(10):1101–9. https://doi.org/10.1038/labinvest.2008.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chaturvedi LS, Marsh HM, Basson MD. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol. 2011;301(5):C1224-38. https://doi.org/10.1152/ajpcell.00518.2010.

    Article  CAS  PubMed  Google Scholar 

  54. Craig DH, Zhang J, Basson MD. Cytoskeletal signaling by way of alpha-actinin-1 mediates ERK1/2 activation by repetitive deformation in human Caco2 intestinal epithelial cells. Am J Surg. 2007;194(5):618–22. https://doi.org/10.1016/j.amjsurg.2007.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gayer CP, Chaturvedi LS, Wang S, Alston B, Flanigan TL, Basson MD. Delineating the signals by which repetitive deformation stimulates intestinal epithelial migration across fibronectin. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G876-85. https://doi.org/10.1152/ajpgi.90648.2008.

    Article  CAS  PubMed  Google Scholar 

  56. Gayer CP, Chaturvedi LS, Wang S, Craig DH, Flanigan T, Basson MD. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem. 2009;284(4):2001–11. https://doi.org/10.1074/jbc.M804576200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported in part by NIH RO1 DK096137 (MDB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. Basson.

Ethics declarations

Conflict of interest

All the authors in the present manuscript declare that they have no potential conflict of interest relevant to this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, L.S., Wang, Q., More, S.K. et al. Schlafen 12 mediates the effects of butyrate and repetitive mechanical deformation on intestinal epithelial differentiation in human Caco-2 intestinal epithelial cells. Human Cell 32, 240–250 (2019). https://doi.org/10.1007/s13577-019-00247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00247-3

Keywords

Navigation