Skip to main content

Advertisement

Log in

Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway

Human Cell Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts shown to play important roles in tumourigenesis and tumour progression. Our study aimed to examine expression of the lncRNA MAGI2-AS3 in breast cancer and to explore its function in cancer cell growth. First, MAGI2-AS3 expression levels in clinical samples and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The functional significance of MAGI2-AS3 in cancer cell proliferation and apoptosis was then examined in vitro. Our results showed MAGI2-AS3 to be down-regulated in breast cancer tissues compared to normal adjacent tissues. Moreover, MAGI2-AS3 markedly inhibited breast cancer cell growth and increased expression of Fas and Fas ligand (FasL). In conclusion, our data suggest that MAGI2-AS3 expression is decreased in breast cancer and that MAGI2-AS3 plays an important role as a tumour suppressor by targeting Fas and FasL signalling. These results provide new insight into novel clinical treatments for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Chou J, Wang B, Zheng T, et al. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun. 2016;472(1):262–9.

    Article  PubMed  CAS  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  5. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.

    Article  PubMed  CAS  Google Scholar 

  6. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.

    Article  PubMed  CAS  Google Scholar 

  7. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61.

    Article  PubMed  CAS  Google Scholar 

  8. Chen R, Wang G, Zheng Y, et al. Long non-coding RNAs in osteosarcoma. Oncotarget. 2017;8(12):20462–75.

    PubMed  PubMed Central  Google Scholar 

  9. Dou J, Ni Y, He X, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells. Am J Transl Res. 2016;8(1):98–108.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Milevskiy MJ, Al-Ejeh F, Saunus JM, et al. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum Mol Genet. 2016;25(15):3269–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hu Y, Sun X, Mao C, et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wu M, Lin Z, Li X, et al. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2. Sci Rep. 2016;6:36045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;8(6):697–702.

    Article  PubMed  CAS  Google Scholar 

  14. Mangolini A, Ferracin M, Zanzi MV, et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res. 2015;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncol. 2001;2(3):133–40.

    Article  PubMed  CAS  Google Scholar 

  16. Hugosson J, Stranne J, Carlsson SV. Radical retropubic prostatectomy: a review of outcomes and side-effects. Acta Oncol. 2011;50(Suppl 1):92–7.

    Article  PubMed  Google Scholar 

  17. De Ruysscher D, Van Meerbeeck J, Vandecasteele K, et al. Radiation-induced oesophagitis in lung cancer patients. Is susceptibility for neutropenia a risk factor? Strahlenther Onkol. 2012;188(7):564–7.

    Article  PubMed  Google Scholar 

  18. Shi J, Dong B, Cao J, et al. Long non-coding RNA in glioma: signaling pathways. Oncotarget. 2017;8(16):27582–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.

    Article  PubMed  CAS  Google Scholar 

  20. Li C, Gao Y, Li Y, Ding D. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun. 2017;491(2):552–7.

    Article  PubMed  CAS  Google Scholar 

  21. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20(3):300–7.

    Article  PubMed  CAS  Google Scholar 

  22. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26(2):155–65.

    Article  PubMed  CAS  Google Scholar 

  23. Liu H, Zhen Q, Fan Y. LncRNA GHET1 promotes esophageal squamous cell carcinoma cells proliferation and invasion via induction of EMT. Int J Biol Markers. 2017;32(4):e403–8.

    Article  PubMed  Google Scholar 

  24. Yu J, Hong JF, Kang J, et al. Promotion of LncRNA HOXA11-AS on the proliferation of hepatocellular carcinoma by regulating the expression of LATS1. Eur Rev Med Pharmacol Sci. 2017;21(15):3402–11.

    PubMed  CAS  Google Scholar 

  25. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61.

    Article  PubMed  CAS  Google Scholar 

  26. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Investig. 2016;126(8):2775–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao L, Sun H, Kong H, et al. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT Phenotype formation through sponging Mir-382. Cell Physiol Biochem. 2017;42(6):2145–58.

    Article  PubMed  CAS  Google Scholar 

  28. Pei Z, Du X, Song Y, et al. Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8(11):18145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng C, Xu Y, Xu L, et al. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer. 2014;14:693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ke J, Yao YL, Zheng J, et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget. 2015;6(26):21934–49.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lu W, Zhang H, Niu Y, et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer. 2017;16(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Myong NH. Tissue microarray analysis of Fas and FasL expressions in human non-small cell lung carcinomas; with reference to the p53 and bcl-2 overexpressions. J Korean Med Sci. 2005;20(5):770–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chang JS, Hsu YL, Kuo PL, et al. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol. 2004;31(10):716–22.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang YH, Fu J, Zhang ZJ, et al. LncRNA-LINC00152 down-regulated by miR-376c-3p restricts viability and promotes apoptosis of colorectal cancer cells. Am J Transl Res. 2016;8(12):5286–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Tasharrofi N, Kouhkan F, Soleimani M, et al. Survival improvement in human retinal pigment epithelial cells via Fas receptor targeting by miR-374a. J Cell Biochem. 2017;118(12):4854–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (No. 81602330) and the Natural Scientific Foundation of Shandong Province (No. ZR2015PH056). We also thank professor Sun of Jiangsu University for providing all of the cell lines.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanmei Du or Kui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, H., Xu, M. et al. Long non-coding RNA (lncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway. Human Cell 31, 232–241 (2018). https://doi.org/10.1007/s13577-018-0206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-018-0206-1

Keywords

Navigation