Skip to main content

Advertisement

Log in

Eribulin upregulates miR-195 expression and downregulates Wnt3a expression in non-basal-like type of triple-negative breast cancer cell MDA-MB-231

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC), which does not show hormone sensitivity, is a poor prognosis disease without an established targeted treatment, so that establishing a therapeutic target for each subtype is desired. In addition, microRNA (miRNA), a non-cording RNA 19–25 nucleotide-longs in length, is known to be involved in regulating gene expression. We examined miRNA expression after exposure to eribulin, MDA-MB-231 cells, non-basal-like type of TNBC cell lines, and HCC1143 cells, basal-like type of TNBC cell lines. The activity of caspase-3 significantly increased compared to the control in MDA-MB-231, whereas no significant difference was observed in HCC1143. The expression level of 20-miRNAs significantly increased compared to the control in MDA-MB-231 after exposure to eribulin. The expression level of 6-miRNAs also significantly increased compared to the control in HCC1143. In these 2 cell types, miR-125b-1 and miR-195 were commonly expressed. While the expression level of miR-125b-1 decreased in both cells, the expression level of miR-195 increased in MDA-MB-231 and decreased in HCC1143. The expression level of miR-195 targeting Wnt3a significantly decreased compared to the control in MDA-MB-231, whereas it significantly increased in HCC1143. These results showed that exposure to eribulin highly increased the expression of miR-195 while it decreased the expression of Wnt3a in non-basal-like type of TNBC. Some miRNAs are known to regulate other signaling pathways involved in human pathogenesis by regulating the Wnt signaling pathway, and miRNA can act as a tumor-suppressing gene; therefore, miR-195 may serve as a therapeutic target in non-basal-like type of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nandini D, Smith B, Leyland-Jones B. Targeting basal-like breast cancers. Curr Drug Targets. 2012;13:1510–24.

    Article  Google Scholar 

  2. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer therapeutic options. Lancet Oncol. 2007;8:235–44.

    Article  PubMed  Google Scholar 

  3. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. doi:10.1016/j.breast.2015.07.009.

  4. Tian M, Zhong Y, Zhou F, et al. Effect of neoadjuvant chemotherapy in patients with triple-negative breast cancer : a meta-analysis. Oncol Lett. 2015;9:2825–32.

    PubMed  PubMed Central  Google Scholar 

  5. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. 2015;. doi:10.1016/j.breast.2015.07.009.

    PubMed  Google Scholar 

  7. Towle MJ, Salvato KA, Wels BF, et al. Eribulin induces irreversible mitotic blockade: implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions. Cancer Res. 2011;71:496–505.

    Article  CAS  PubMed  Google Scholar 

  8. Munoz-Couselo E, Perez-Garcia J, Cortes J. Eribulin mesylate as a microtubule inhibitor for treatment of patients with metastatic breast cancer. Onco Targets Ther. 2011;4:185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshida T, Ozawa Y, Kimura T, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pean E, Klaar S, Berglund EG. The European medicines agency review of eribulin for the treatment of patients withlocally advanced or metastatic breast cancer: summary of the scientific assessment of the committee for medicinal products for human use. Clin Cancer Res. 2012;18:4491–7.

    Article  CAS  PubMed  Google Scholar 

  11. D`Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci. 2013;14:22202–20.

  12. Yang F, Zhang W, Shen Y, et al. Identification of dysregulated microRNAs in triple-negative breast cancer (review). Int J Oncol. 2015;46:927–32.

    PubMed  Google Scholar 

  13. Bertoli G, Cava C, Castiglioni l. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122-43.

  14. Hu C, Shen SQ, Cui ZH, et al. Effect of microRNA-1 on hepatocellular carcinoma tumor endothelial cells. World J Gastroenterol. 2015;21:5884–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouyang M, Li Y, Ye S. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One. 2014;. doi:10.1371/journal.pone.0096228.

    Google Scholar 

  16. Xie X, Hu Y, Xu L, et al. The role of miR-125b-mitochondria-caspase-3 pathway in doxorubicin resistance and therapy in humanbreast cancer. Tumour Biol. 2015 [Epub ahead of print].

  17. Mishra S, Srivastava AK, Suman S, et al. Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer. Cancer Lett. 2015;. doi:10.1016/j.canlet.

    Google Scholar 

  18. Liu B, Qu J, Xu F, et al. MiR-195 suppresses non-small cell lung cancer by targeting CHEK1. Oncotarget. 2015;6:9445–56.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao FL, Dou YC, wang XF, et al. Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. Mol Biol Rep. 2014;41:5913–22.

  20. Tahiri A, Leivonen SK, Luders T, et al. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breasttumors. Carcinogenesis. 2014;35:76–85.

    Article  CAS  PubMed  Google Scholar 

  21. Li D, Zhao Y, Liu C, et al. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 2011;17:1722–30.

    Article  CAS  PubMed  Google Scholar 

  22. Song CG, Wu XY, Wang V, et al. Correlation of miR-195 with invasiveness and prognosis of breast cancer. Zhong Wai Ke Zhi. 2012;50:353–6.

    Google Scholar 

  23. Sekiya Y, Ogawa T, Iizuka M, et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol. 2011;226:2535–42.

    Article  CAS  PubMed  Google Scholar 

  24. Mao Y, Liu Y, Mao Q, et al. Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett. 2012;586:442–7.

    Article  PubMed  Google Scholar 

  25. Sun Y, Luo D, Liao DJ. CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells. J Carcinog. 2012;. doi:10.4103/1477-3163.

    PubMed  PubMed Central  Google Scholar 

  26. Etemadmoghadam D, Au-Yeung G, Wall M, et al. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin Cancer Res. 2013;19:5960–71.

    Article  CAS  PubMed  Google Scholar 

  27. Wu CL, Kirley SD, Xiao H. et al. Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers. Cancer Res. 2001;61:7325–32.

  28. Vimala K, Sundarraj S, Sujitha MV, et al. Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Arch Med Res. 2012;43:415–22.

    Article  CAS  PubMed  Google Scholar 

  29. Kong Y, Chen J, Zhou Z, et al. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One. 2014;. doi:10.1371/journal.pone.0103760.

    Google Scholar 

  30. Maubant S, Tesson B, Maire V, et al. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells. PLoS One. 2015;. doi:10.1371/journal.pone.0122333.

    PubMed  PubMed Central  Google Scholar 

  31. Dey N, Barwick BG, Moreno CS, et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer. 2013;. doi:10.1186/1471-2407-13-537.

    Google Scholar 

  32. Green JL, La J, Yum KW, et al. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci USA. 2013;110:6991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang SH, Li N, Wei Y, et al. β-catenin deacetylation is essential for WNT-induced proliferation of breast cancer cells. Mol Med Rep. 2014;9:973–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Furuya.

Ethics declarations

Conflict of interest

The author has conflict of interest to disclose with respect to this presentation. Eribulin mesylate for this study support was provided by Eisai Co., Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuya, K., Sasaki, A., Tsunoda, Y. et al. Eribulin upregulates miR-195 expression and downregulates Wnt3a expression in non-basal-like type of triple-negative breast cancer cell MDA-MB-231. Human Cell 29, 76–82 (2016). https://doi.org/10.1007/s13577-015-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-015-0126-2

Keywords

Navigation