Skip to main content

Advertisement

Log in

Derivation of multipotent nestin+/CD271/STRO-1 mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The successful establishment of stem cell-based therapies requires multipotent, immunocompatible stem cells, highly efficient strategies for direct differentiation, and most importantly, optimal culture conditions for large-scale expansion of such cell populations. Other than adult tissues, human embryonic stem cells (hESCs) represent another infinitely expansible source for mesenchymal stem cell (MSC) derivation. Here, we reproducibly derived a population of Nestin+/CD271/STRO-1 mesenchymal-like precursors from hESCs (hESC-MPs) in chemically defined conditions, without requiring any serum or serum replacement of animal origin, based on a Y-27632-assisted monolayer culture system. These cells showed slim fibroblastic morphology, and satisfied the criteria of MSCs including self-renewal, the expression of multiple MSC-specific markers and the ability to differentiate into osteoblasts, adipocytes and chondrocytes. Compared with previously reported hESC-derived MSCs, our hESC-MPs were more multipotent, and could differentiate into representative derivatives of all three embryonic germ layers including mature smooth muscle cells, cardiomyocytes, functional hepatocytes and neural cells expressing various neurotransmitter phenotypes, making them an attractive cell source for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219–28.

    Article  PubMed  CAS  Google Scholar 

  2. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    Article  PubMed  CAS  Google Scholar 

  3. Lian Q, Lye E, Suan Yeo K, et al. Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells. 2007;25:425–36.

    Article  PubMed  CAS  Google Scholar 

  4. Liu YP, Seckin H, Izci Y, Du ZW, Yan YP, Baskaya MK. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2009;29:780–91.

    Article  PubMed  Google Scholar 

  5. Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2:e161.

    Article  PubMed  Google Scholar 

  6. Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells. 2006;24:1914–22.

    Article  PubMed  CAS  Google Scholar 

  7. Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med. 2007;13:642–8.

    Article  PubMed  CAS  Google Scholar 

  8. Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res. 2010;25:1216–33.

    Article  PubMed  CAS  Google Scholar 

  9. Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter MK. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells. 2004;22:972–80.

    Article  PubMed  CAS  Google Scholar 

  10. Hwang NS, Varghese S, Lee HJ, et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA. 2008;105:20641–6.

    Article  PubMed  CAS  Google Scholar 

  11. Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs. 2009;189:256–60.

    Article  PubMed  Google Scholar 

  12. Lee EJ, Lee HN, Kang HJ, et al. Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue Eng Part A. 2009;16:705–15.

    Article  Google Scholar 

  13. Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells. 2005;23:1234–41.

    Article  PubMed  CAS  Google Scholar 

  14. Erceg S, Lainez S, Ronaghi M, et al. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS One. 2008;3:e2122.

    Article  PubMed  Google Scholar 

  15. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  PubMed  CAS  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.

    Article  PubMed  CAS  Google Scholar 

  18. Mannello F, Tonti GA. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells. 2007;25:1603–9.

    Article  PubMed  CAS  Google Scholar 

  19. Heiskanen A, Satomaa T, Tiitinen S, et al. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells. 2007;25:197–202.

    Article  PubMed  CAS  Google Scholar 

  20. Sakamoto N, Tsuji K, Muul LM, et al. Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood. 2007;110:501–8.

    Article  PubMed  CAS  Google Scholar 

  21. Hisamatsu-Sakamoto M, Sakamoto N, Rosenberg AS. Embryonic stem cells cultured in serum-free medium acquire bovine apolipoprotein B-100 from feeder cell layers and serum replacement medium. Stem Cells. 2008;26:72–8.

    Article  PubMed  CAS  Google Scholar 

  22. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–32.

    Article  PubMed  CAS  Google Scholar 

  23. Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–6.

    Article  PubMed  CAS  Google Scholar 

  24. Wu R, Xu C, Jin F, et al. Derivation, characterization and differentiation of a new human embryonic stem cell line from a Chinese hatched blastocyst assisted by a non-contact laser system. Hum Cell. 2010;23:89–102.

    Article  PubMed  CAS  Google Scholar 

  25. Yamada T, Yoshikawa M, Kanda S, et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 2002;20:146–54.

    Article  PubMed  Google Scholar 

  26. Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA. 2006;103:12167–72.

    Article  PubMed  CAS  Google Scholar 

  27. Huang H, Zhao X, Chen L, et al. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun. 2006;351:321–7.

    Article  PubMed  CAS  Google Scholar 

  28. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301–16.

    Article  PubMed  CAS  Google Scholar 

  29. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol. 2002;30:783–91.

    Article  PubMed  CAS  Google Scholar 

  30. Galan-Caridad JM, Harel S, Arenzana TL, et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell. 2007;129:345–57.

    Article  PubMed  CAS  Google Scholar 

  31. Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003;21:183–6.

    Article  PubMed  CAS  Google Scholar 

  32. Hotta R, Pepdjonovic L, Anderson RB, et al. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells. 2009;27:2896–905.

    PubMed  CAS  Google Scholar 

  33. Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA. 2006;103:6907–12.

    Article  PubMed  CAS  Google Scholar 

  34. Sze SK, de Kleijn DP, Lai RC, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics. 2007;6:1680–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood. 2004;103:1647–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Scientific Research Program of China (2007CB947804), and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y2110254). We also thank Dr. Huan Chen (College of Life Sciences, Zhejiang University), Xiangzhen Liu (Shanghai Institute of Hematology, Rui-Jin Hospital, College of Medicine, Shanghai Jiao-Tong University) and Qiannv Hou (College of Life Sciences, Zhejiang University) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Gu, B., Zhao, X. et al. Derivation of multipotent nestin+/CD271/STRO-1 mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions. Human Cell 26, 19–27 (2013). https://doi.org/10.1007/s13577-011-0022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-011-0022-3

Keywords

Navigation