Skip to main content
Log in

Balancing yield trade-off in legumes during multiple stress tolerance via strategic crosstalk by native NAC transcription factors

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

NAC transcription factors are the bonafide regulators of growth and stress-signaling. Disparate signals converge at NAC-mediated transcriptional programming to initiate a cellular response. Like other stress regulators such as DREB, DDF1, bZIP, PYL, NAC-mediated stress adaptation often compromises beneficial agronomic traits resulting in yield-penalty. Overexpression of these TFs can cause metabolic and hormonal perturbations that exert growth-retardation by activating ABA-hypersensitivity, chloroplast-degradation, or carbon-starvation, resulting in growth arrest and decline in photosynthetic activity. In addition, functional conservation of non-native members is unpredictable due to the non-conserved C-terminal part of the NAC proteins, hence limiting the utilization of well-studied orthologous genes in legumes. The growth/tolerance trade-off is an unresolved mystery. The co-occurrence of multiple stresses further perplexes the broad-range stress improvement of legume crops. To overcome the trade-offs, we need to understand the growth checkpoints that crosstalk with mediated by the stress-responsive gene candidate. Interestingly, NAC proteins appear to be the branch-point of ABA-dependent and ABA independent signaling hence can activate/repress a non-overlapping set of genes associated with stress response and growth to avoid the detrimental crosstalk. Indeed, a versatile NAC member improving both stress adaptation and yield simultaneously through synergistic crosstalk holds the key for sustainable legume improvement. Moreover, the successful manipulation of stress signaling depends on non-interfered ABA signaling of stress responses and growth, as well as strengthening of carbon assimilation. Photosynthesis plays a central role in plant carbohydrate metabolism and stress recovery by restoring the energy status. Hormones and carbohydrates participate together in a complex stress-signal transduction system. For instance, ABA antagonistically regulates growth and sugar signals. Native NAC candidates isolated from robust genetic sources like cowpea can be a useful approach to overcome trade-offs and achieve a desired phenotype. This review provides new insights to improve legume yield via transcriptional reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

adapted from Welner et al., 2016 with printable license) (Welner et al. 2016). (b) The unrooted phylogenetic tree derived from the alignment of the 2106 NAC domains from 24 plant species clustered into six major groups (left). Schematic depiction of the NAC family classified into six groups and 16 subgroups (graphic adapted from Pereira-Santana et al., 2015 (right) (Pereira-Santana et al. 2015)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ATAF:

Arabidopsis transcription activation factor

NAC:

NAM/ATAF1//CUC2

NACBS:

NAC binding site

NLS:

Nuclear localization signal

ROS:

Reactive oxygen species

SAM:

Shoot apical meristem

TF:

Transcription factor

TAR:

Transactivation region

TMM:

Transmembrane motif

VuNAC:

Vigna unguiculata NAC

References

  • Abraham M, Pingali P (2021) Shortage of pulses in India: Understanding how markets incentivize supply response. J Agribus Develop Emerg Econ

  • Agbicodo E, Fatokun C, Muranaka S, Visser RG (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167(3):353–370

    Article  Google Scholar 

  • Ahmad I, Maathuis FJ (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171(9):708–714

    Article  CAS  PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amede T, Schubert S, Stahr K (2003) Mechanisms of drought resistance in grain legumes I: osmotic adjustment. SINET Ethiop J Sci 26(1):37–46

    Google Scholar 

  • Araujo SS et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34(1–3):237–280

    Article  CAS  Google Scholar 

  • Asch F, Dingkuhn M, Sow A, Audebert A (2005) Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crop Res 93(2–3):223–236

    Article  Google Scholar 

  • Baillo EH, Kimotho RN, Zhang Z, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10(10):771

    Article  CAS  PubMed Central  Google Scholar 

  • Bal SK, Minhas PS (2017) Atmospheric stressors: challenges and coping strategies Abiotic Stress Management for Resilient Agriculture. Springer, p 9–50

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69:2753–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beebe S, Rao I, Blair M, Acosta J (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia V, Singh P, Wani S, Rao AK, Srinivas K (2006) Yield gap analysis of soybean, groundnut, pigeonpea and chickpea in india using simulation modeling: global theme on agroecosystems Report No. 31.

  • Bian Z, Gao H, Wang C (2021) NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops. Int J Mol Sci 22(1):81

    Article  CAS  Google Scholar 

  • Boukar O et al (2019) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed 138(4):415–424

    Article  Google Scholar 

  • Burssens S et al (2000) Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211(5):632–640

    Article  CAS  PubMed  Google Scholar 

  • Cai W et al (2021) Pepper NAC-type transcription factor NAC2c Balances the Trade-off Between Growth and Defense Responses. Plant Physiol

  • Carvalho M, Lino-Neto T, Rosa E, Carnide V (2017) Cowpea: a legume crop for a challenging environment. J Sci Food Agric 97(13):4273–4284

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:49–104

    Article  CAS  Google Scholar 

  • Chen X et al (2016) Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de novo root organogenesis in Arabidopsis. Plant Physiol 170(4):2136–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES (2009) The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol 149(4):1724–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozet P et al (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190

    Article  PubMed  PubMed Central  Google Scholar 

  • De Clercq I et al (2021) Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nature Plants 7(4):500–513

    Article  PubMed  Google Scholar 

  • Dietterich LH et al (2014) Increasing CO2 threatens human nutrition. Sci. Data 2:150036

    Article  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    Article  CAS  PubMed  Google Scholar 

  • Duc G et al (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci 34(1–3):381–411

    Article  Google Scholar 

  • Ernst HA, Nina Olsen A, Skriver K, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5(3):297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fageria N, Gheyi H, Moreira A (2011) Nutrient bioavailability in salt affected soils. J Plant Nutr 34(7):945–962

    Article  CAS  Google Scholar 

  • Farooq M et al (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203(2):81–102

    Article  Google Scholar 

  • Foyer CH et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8):1–10

    Article  Google Scholar 

  • Francini A, Sebastiani L (2019) Abiotic stress effects on performance of horticultural crops. Multidisciplinary Digital Publishing Institute

  • Garapati P, Xue G-P, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall A (2012) Phenotyping cowpeas for adaptation to drought. Front Physiol 3:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao YJ et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • Hoang XLT, Nguyen NC, Nguyen Y-NH, Watanabe Y, Tran L-SP, Thao NP (2020) The soybean GmNAC019 transcription factor mediates drought tolerance in Arabidopsis in an abscisic acid-dependent manner. Int J Mol Sci 21(1):286

    Article  CAS  Google Scholar 

  • Hossain A, et al. (2020) Nutrient Management for Improving Abiotic Stress Tolerance in Legumes of the Family Fabaceae The Plant Family Fabaceae. Springer, p 393–415

  • Hossain M, Hamid A, Khaliq M (2009) Evaluation of mungbean (Vigna radiata (L.) Wilczek) genotypes on the basis of photosynthesis and dry matter accumulation. J Agric Rural Develop, pp 1–8

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Huh SU, Lee S-B, Kim HH, Paek K-H (2012) ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Mol Cells 34(3):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain RM, Ali M, Feng X, Li X (2017) The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biol 17(1):1–11

    Article  Google Scholar 

  • Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11(1):1–17

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishiyaku M, Aliyu H (2013) Field evaluation of cowpea genotypes for drought tolerance and Striga resistance in the dry savanna of the North-West Nigeria. Int J Plant Breed Genet 7(1):47–56

    Article  Google Scholar 

  • Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39(6):1762–1768

    Article  Google Scholar 

  • Ismail AM, Hall AE (2002) Variation in traits associated with chilling tolerance during emergence in cowpea germplasm. Field Crop Res 77(2–3):99–113

    Article  Google Scholar 

  • Jensen MK, Kjaersgaard T, Petersen K, Skriver K (2010) NAC genes: time-specific regulators of hormonal signaling in Arabidopsis. Plant Signal Behav 5(7):907–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK et al (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Biol 3:321–327

    Article  CAS  Google Scholar 

  • Jeong JS et al (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C (2019) Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice 12(1):1–11

    Article  Google Scholar 

  • Jin H, Huang F, Cheng H, Song H, Yu D (2013) Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep 31(2):435–442

    Article  CAS  Google Scholar 

  • Jin J et al (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, p gkw982

  • Jin JF et al (2020) Genome-wide identification and expression analysis of the NAC transcription factor family in tomato (Solanum lycopersicum) during aluminum stress. BMC Genom 21:1–14

    Article  Google Scholar 

  • Jin X, Ren J, Nevo E, Yin X, Sun D, Peng J (2017) Divergent evolutionary patterns of NAC transcription factors are associated with diversification and gene duplications in angiosperm. Front Plant Sci 8:1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11(12):830–842

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Nam HG, Lim PO (2016) Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol 33:48–56

    Article  PubMed  Google Scholar 

  • Kim S-G, Kim S-Y, Park C-M (2007a) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226(3):647–654

    Article  CAS  PubMed  Google Scholar 

  • Kim S-W, Lee S-K, Jeong H-J, An G, Jeon J-S, Jung K-H (2017) Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Sci Rep 7(1):1–18

    Google Scholar 

  • Kim S-Y et al (2007b) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35(1):203–213

    Article  CAS  PubMed  Google Scholar 

  • Kudo M et al (2019) A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. Plant J 97(2):240–256

    Article  CAS  PubMed  Google Scholar 

  • Kunieda T et al (2008) NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20(10):2631–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmi SR, Patra P, Gummagolmath K (2020) Impact of doubling farmers’ income on area, production and productivity of pulses in India. Current J Appl Sci Technol, pp 73–86

  • Li P et al (2021) Genome-wide identification of NAC transcription factors and their functional prediction of abiotic stress response in peanut. Front Genet 12:240

    Google Scholar 

  • Li S et al (2016) Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiol 172(3):1804–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling L, Song L, Wang Y, Guo C (2017) Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiol Mol Biol Plants 23(2):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Sun Q, Zhao L, Li Z, Peng Z, Zhang J (2018a) Heterologous expression of the transcription factor EsNAC1 in Arabidopsis enhances abiotic stress resistance and retards growth by regulating the expression of different target genes. Front Plant Sci 9:1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang B, Li Z, Peng Z, Zhang J (2018b) TsNAC1 is a key transcription factor in abiotic stress resistance and growth. Plant Physiol 176(1):742–756

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hong L, Li X-Y, Yao Y, Hu B, Li L (2011) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75(3):443–450

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci 9:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, Liu JX (2020) A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J 18(5):1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun J, Wu Y (2016) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129(5):955–962

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2017) A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis. Plant Mol Biol Report 35(1):83–96

    Article  CAS  Google Scholar 

  • Maas E, Poss J (1989) Salt sensitivity of cowpea at various growth stages. Irrig Sci 10(4):313–320

    Article  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56(4):613–626

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants Combined Stresses in Plants. Springer, p 1–25

  • Mahmood K, El-Kereamy A, Kim S-H, Nambara E, Rothstein SJ (2016) ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant Cell Physiol 57(10):2029–2046

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618

    Article  CAS  Google Scholar 

  • Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P (2020) Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum

  • Maugarny-Calès A, Gonçalves B, Jouannic S, Melkonian M, Wong GK-S, Laufs P (2016) Apparition of the NAC transcription factors predates the emergence of land plants. Mol Plant 9(9):1345–1348

    Article  PubMed  Google Scholar 

  • Maugarny A, Gonçalves B, Arnaud N, Laufs P (2016) CUC transcription factors: to the meristem and beyond Plant Transcription Factors. Elsevier, pp 229–247

  • Melo BP et al (2018) Revisiting the soybean GmNAC superfamily. Front Plant Sci 9:1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Morales F et al (2020) Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9(1):88

    Article  CAS  PubMed Central  Google Scholar 

  • Movahedi A et al (2015) Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell Tissue Organ Culture 120(1):141–154

    Article  CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Int J Bot 6(2):136–143

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nagahage ISP et al (2020) An Arabidopsis NAC domain transcription factor, ATAF2, promotes age-dependent and dark-induced leaf senescence. Physiol Plant 170(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KH et al (2018) The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Botany 151:12–20

    Article  CAS  Google Scholar 

  • Nguyen KH, Mostofa MG, Watanabe Y, Tran CD, Rahman MM, Tran L-SP (2019a) Overexpression of GmNAC085 enhances drought tolerance in Arabidopsis by regulating glutathione biosynthesis, redox balance and glutathione-dependent detoxification of reactive oxygen species and methylglyoxal. Environ Exp Botany 161:242–254

    Article  CAS  Google Scholar 

  • Nguyen NC et al (2019b) Ectopic expression of Glycine max GmNAC109 enhances drought tolerance and ABA sensitivity in Arabidopsis. Biomolecules 9(11):714

    Article  CAS  PubMed Central  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant 139(2):129–143

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochiai K, Shimizu A, Okumoto Y, Fujiwara T, Matoh T (2011) Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice. Plant Physiol 156(3):1457–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooka H et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  CAS  PubMed  Google Scholar 

  • Pandurangaiah M et al (2013) Cloning and expression analysis of MuNAC4 transcription factor protein from horsegram (Macrotyloma uniflorum (Lam.) Verdc.) conferred salt stress tolerance in Escherichia coli. Acta Physiol Plantarum 35(1):139–146

    Article  CAS  Google Scholar 

  • Pereira-Santana A, Alcaraz LD, Castaño E, Sanchez-Calderon L, Sanchez-Teyer F, Rodriguez-Zapata L (2015) Comparative genomics of NAC transcriptional factors in angiosperms: implications for the adaptation and diversification of flowering plants. PLoS ONE 10(11):141866

    Article  Google Scholar 

  • Pinheiro GL et al (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444(1–2):10–23

    Article  CAS  PubMed  Google Scholar 

  • Prince SJ et al (2016) Evaluation of high yielding soybean germplasm under water limitation. J Int Plant Biol 58(5):475–491

    Article  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Quach TN et al (2014) Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis. PLoS ONE 9(1):e84886

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney R (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crop Res 201:146–161

    Article  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK (2016) Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crop Res 197:10–27

    Article  Google Scholar 

  • Rauf M, Arif M, Fisahn J, Xue G-P, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25(12):4941–4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Rosenberger CL, Chen J (2018) To grow or not to grow: TOR and SnRK2 coordinate growth and stress response in Arabidopsis. Mol Cell 69(1):3–4

    Article  CAS  PubMed  Google Scholar 

  • Satheesh V, Jagannadham PTK, Chidambaranathan P, Jain P, Srinivasan R (2014) NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.). Mol Biol Rep 41(12):7763–7773

    Article  CAS  PubMed  Google Scholar 

  • Sawicki M, Aït Barka E, Clément C, Vaillant-Gaveau N, Jacquard C (2015) Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J Exp Bot 66(7):1707–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler C et al (2014) Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol 164(4):1677–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad R, et al. (2020) Harnessing the potential of plant transcription factors in developing climate-smart crops: future prospects, challenges, and opportunities. Saudi J Biol Sci

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y et al (2017) Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front Plant Sci 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2006) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227. https://doi.org/10.1093/jxb/erl164%JJournalofExperimentalBotany

    Article  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh B (2014) Improved Cowpea Cultivation and Seed Production Cowpea: The Food Legume of the 21st Century. pp 87–123

  • Singh B (2020) Cowpea: the food legume of the 21st century, vol 164. Wiley, Hoboken

    Google Scholar 

  • Smitchger J, Weeden NF (2018) The ideotype for seed size: a model examining the relationship between seed size and actual yield in pea. Int J Agronomy

  • So H-A, Lee J-H (2019) NAC transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress. J Plant Biol 62(2):147–160

    Article  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R et al (2018) Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: adzuki bean and Mung bean. Sci Rep 8(1):1–19. https://doi.org/10.1038/s41598-018-34920-8

    Article  CAS  Google Scholar 

  • Srivastava R, Sahoo L (2021) Cowpea NAC transcription factors positively regulate cellular stress response and balance energy metabolism in yeast via reprogramming of biosynthetic pathways. ACS Synth Biol. https://doi.org/10.1021/acssynbio.1c00208

    Article  PubMed  Google Scholar 

  • Sun L et al (2019) The SNAC-A transcription factor ANAC032 reprograms metabolism in Arabidopsis. Plant Cell Physiol 60(5):999–1010

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H et al (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genom 284(3):173–183

    Article  CAS  Google Scholar 

  • Tang G, Shao F, Xu P, Shan L, Liu Z (2017) Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russ J Plant Physiol 64(4):525–535

    Article  CAS  Google Scholar 

  • Tran L-SP et al (2009) Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genom 281(6):647–664

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Tweneboah S, Oh S-K (2017) Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops. J Plant Biotechnol 44(1):1–11

    Article  Google Scholar 

  • Van Ha C et al (2014) Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS ONE 9(12):e114107

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zonneveld M et al (2020) Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci Rep 10(1):1–11

    Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant–pathogen warfare under changing climate conditions. Curr Biol 28(10):R619–R634

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Ehlers JD, Ogbuchiekwe EJ, Yang S, McGiffen ME (2004) Competitiveness of erect, semierect, and prostrate cowpea genotypes with sunflower (Helianthus annuus) and purslane (Portulaca oleracea). Weed Sci 52(5):815–820

    Article  CAS  Google Scholar 

  • Wang Z, Dane F (2013) NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant 35(5):1397–1408

    Article  CAS  Google Scholar 

  • Welner DH, Deeba F, Leggio LL, Skriver K (2016) NAC transcription factors: from structure to function in stress-associated networks Plant Transcription Factors. Elsevier, pp 199–212

  • Willemsen V et al (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev Cell 15(6):913–922

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Wang S (2016) Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biol 16(1):1–13

    Article  CAS  Google Scholar 

  • Wu Y et al (2009) Dual function of arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Yadav SS, McNeil DL, Redden R, Patil SA (2010) Climate change and management of cool season grain legume crops. Springer, Berlin

    Book  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66(4):579–590

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Kim MY, Ha J, Lee S-H (2019) Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants. Front Plant Sci 10:1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2020) DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield. Plant Biotechnol J 18(3):829–844

    Article  CAS  PubMed  Google Scholar 

  • Yu X et al (2016) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35(3):613–627

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wang H, Cai J, Bi Y, Li D, Song F (2019a) Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol 19(1):1–19

    Article  Google Scholar 

  • Yuan X, Wang H, Cai J, Li D, Song F (2019b) NAC transcription factors in plant immunity. Phytopathol Res 1(1):1–13

    Article  Google Scholar 

  • Zhao D, Derkx A, Liu DC, Buchner P, Hawkesford M (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol 17(4):904–913

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Program Support Grant Phase-II from the Department of Biotechnology, Government of India to L.S. (BT/PR13560/COE/34/44/2015).

Author information

Authors and Affiliations

Authors

Contributions

R.S. wrote the manuscript and L.S. corrected it. All the authors approved the final version of the article.

Corresponding author

Correspondence to Lingaraj Sahoo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R., Sahoo, L. Balancing yield trade-off in legumes during multiple stress tolerance via strategic crosstalk by native NAC transcription factors. J. Plant Biochem. Biotechnol. 30, 708–729 (2021). https://doi.org/10.1007/s13562-021-00749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00749-y

Keywords

Navigation