Skip to main content
Log in

Quel avenir pour les médicaments de l’hémostase dans le traitement du sepsis sévère après le Xigris® ?

After Xigris®, what is the future for drugs targeting haemostasis in sepsis treatment?

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Le traitement du sepsis sévère par la protéine C activée (Xigris®) a suscité beaucoup d’espoir mais aussi fait couler beaucoup d’encre. Le rationnel de son évaluation dans cette indication était basé sur une connaissance de plus en plus approfondie de la physiopathologie du sepsis sévère qui a clairement mis en exergue un emballement réciproque des processus d’inflammation et de coagulation chez ces patients. La protéine C activée, comme d’autres inhibiteurs de la coagulation, possède des propriétés anti-inflammatoires en plus de leur activité anticoagulante, faisant de ces protéines des candidats intéressants dans cette indication. Cependant, après le retrait du marché de la protéine C activée et les résultats négatifs des essais de phase III évaluant deux autres inhibiteurs, l’inhibiteur de la voie du facteur tissulaire (TFPI) et l’antithrombine, reste-t-il une place pour ces médicaments ciblant l’hémostase ? D’autres pistes comme l’utilisation de thrombomoduline soluble, le développement de variants optimisés de la protéine C activée ou le développement d’inhibiteurs des axes facteur tissulaire-FVIIa ou FXIa-FXIIa restent des pistes intéressantes et sont, pour certaines d’entre elles, en cours d’évaluation.

Abstract

Treatment of severe sepsis with activated protein C (Xigris®) has generated great hopes but has also been a subject of controversy. The rational for its evaluation in this indication was based on the increasing knowledge regarding severe sepsis pathophysiology, which has clearly highlighted a reciprocal runaway between inflammation and coagulation processes in these patients. Activated protein C, like other coagulation inhibitors, possesses anti-inflammatory properties in addition to their anticoagulant activity, making them attractive candidates in this indication. However, after Xigris® withdrawal and the negative results of phase III trials evaluating two other inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin, is there still a place for new drugs targeting haemostasis? The use of soluble thrombomodulin, development of optimized variants of activated protein C as well as inhibitors of both tissue factor-FVIIa and FXIIa-FXIa axes are currently under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Linde-Zwirble W, Angus D, Carcillo J, et al (1999) Age-specific incidence and outcome of sepsis in the US. Crit Care Med 27:A33

    Article  Google Scholar 

  2. Esmon CT (2003) Inflammation and thrombosis. J Thromb Haemost 1:1343–1348

    Article  PubMed  CAS  Google Scholar 

  3. Dahlback B (2000) Blood coagulation. Lancet 355:1627–1632

    Article  PubMed  CAS  Google Scholar 

  4. Schouten M, Wiersinga WJ, Levi M, Van der Poll T (2008) Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 83:536–545

    Article  PubMed  CAS  Google Scholar 

  5. Jaimes F, De La Rosa G, Morales C, et al (2009) Unfractioned heparin for treatment of sepsis: a randomized clinical trial (The HETRASE Study). Crit Care Med 37:1185–1196

    Article  PubMed  CAS  Google Scholar 

  6. Perez-Ruiz A, Montes R, Carrasco P, Rocha E (2002) Effects of a low molecular weight heparin, bemiparin, and unfractionated heparin on hemostatic properties of endothelium. Clin Appl Thromb Hemost 8:65–71

    Article  PubMed  CAS  Google Scholar 

  7. Li Y, Sun JF, Cui X, et al (2011) The effect of heparin administration in animal models of sepsis: a prospective study in Escherichia coli-challenged mice and a systematic review and metaregression analysis of published studies. Crit Care Med 39:1104–1112

    Article  PubMed  CAS  Google Scholar 

  8. Lwaleed BA, Bass PS (2006) Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol 208: 327–339

    Article  PubMed  CAS  Google Scholar 

  9. Carr C, Bild GS, Chang AC, et al (1994) Recombinant E. coliderived tissue factor pathway inhibitor reduces coagulopathic and lethal effects in the baboon Gram-negative model of septic shock. Circ Shock 44:126–137

    PubMed  CAS  Google Scholar 

  10. Abraham E (2000) Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis. Crit Care Med 28:S31–S33

    Article  PubMed  CAS  Google Scholar 

  11. Abraham E, Reinhart K, Opal S, et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290:238–247

    Article  PubMed  CAS  Google Scholar 

  12. Wiedermann CJ (2006) Clinical review: molecular mechanisms underlying the role of antithrombin in sepsis. Crit Care 10:209

    Article  PubMed  Google Scholar 

  13. Uchiba M, Okajima K (1997) Antithrombin III (AT III) prevents LPS-induced pulmonary vascular injury: novel biological activity of AT III. Semin Thromb Hemost 23:583–590

    Article  PubMed  CAS  Google Scholar 

  14. Taylor FB Jr, Emerson TE Jr, Jordan R, et al (1988) Antithrombin-III prevents the lethal effects of Escherichia coli infusion in baboons. Circ Shock 26:227–235

    PubMed  CAS  Google Scholar 

  15. Afshari A, Wetterslev J, Brok J, Moller A (2007) Antithrombin III in critically ill patients: systematic review with meta-analysis and trial sequential analysis. BMJ 335:1248–1251

    Article  PubMed  Google Scholar 

  16. Warren BL, Eid A, Singer P, et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286:1869–1878

    Article  PubMed  CAS  Google Scholar 

  17. Joyce DE, Gelbert L, Ciaccia A, et al (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276:11199–1203

    Article  PubMed  CAS  Google Scholar 

  18. Cheng T, Liu D, Griffin JH, et al (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

    Article  PubMed  CAS  Google Scholar 

  19. Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105:3178–3184

    Article  PubMed  CAS  Google Scholar 

  20. Abraham E, Laterre PF, Garg R, et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353:1332–1341

    Article  PubMed  CAS  Google Scholar 

  21. Nadel S, Goldstein B, Williams MD, et al (2007) Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomized controlled trial. Lancet 369:836–843

    Article  PubMed  CAS  Google Scholar 

  22. Warren HS, Suffredini AF, Eichacker PQ, Munford RS (2002) Risks and benefits of activated protein C treatment for severe sepsis. N Engl J Med 347:1027–1030

    Article  PubMed  Google Scholar 

  23. Ranieri VM, Thompson BT, Barie PS, et al (2012) Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366:2055–2064

    Article  PubMed  CAS  Google Scholar 

  24. Faust SN, Levin M, Harrison OB, et al (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:408–416

    Article  PubMed  CAS  Google Scholar 

  25. de Kleijn ED, de Groot R, Hack CE, et al (2003) Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 31:1839–1847

    Article  PubMed  Google Scholar 

  26. Crivellari M, Della Valle P, Landoni G, et al (2009) Human protein C zymogen concentrate in patients with severe sepsis and multiple organ failure after adult cardiac surgery. Intensive Care Med 35:1959–1963

    Article  PubMed  CAS  Google Scholar 

  27. Kinasewitz GT, Yan SB, Basson B, et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative microorganism. Crit Care 8:R82–R90

    Article  PubMed  Google Scholar 

  28. White B, Livingstone W, Murphy C, et al (2000) An open-label study of the role of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans-associated meningococcemia. Blood 96:3719–3724

    PubMed  CAS  Google Scholar 

  29. Rintala E, Kauppila M, Seppala OP, et al (2000) Protein C substitution in sepsis-associated purpura fulminans. Crit Care Med 28:2373–2378

    Article  PubMed  CAS  Google Scholar 

  30. Smith OP, White B, Vaughan D, et al (1997) Use of protein C concentrate, heparin, and haemodiafiltration in meningococcusinduced purpura fulminans. Lancet 350:1590–1593

    Article  PubMed  CAS  Google Scholar 

  31. Decembrino L, D’Angelo A, Manzato F, et al (2010) Protein C concentrate as adjuvant treatment in neonates with sepsis-induced coagulopathy: a pilot study. Shock 34:341–345

    Article  PubMed  CAS  Google Scholar 

  32. Ito T, Maruyama I (2011) Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost 9:168–173

    Article  PubMed  CAS  Google Scholar 

  33. Isermann B, Hendrickson SB, Zogg M, et al (2001) Endotheliumspecific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108:537–546

    PubMed  CAS  Google Scholar 

  34. Esmon CT (2003) The protein C pathway. Chest 124:26S–32S

    Article  PubMed  CAS  Google Scholar 

  35. Campbell W, Okada N, Okada H (2001) Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev 180:162–167

    Article  PubMed  CAS  Google Scholar 

  36. Shi CS, Shi GY, Hsiao SM, et al (2008) Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112:3661–3670

    Article  PubMed  CAS  Google Scholar 

  37. Abeyama K, Stern DM, Ito Y, et al (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115:1267–1274

    PubMed  CAS  Google Scholar 

  38. Conway EM, Van de Wouwer M, Pollefeyt S, et al (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogenactivated protein kinase pathways. J Exp Med 196:565–577

    Article  PubMed  CAS  Google Scholar 

  39. Moll S, Lindley C, Pescatore S, et al (2004) Phase I study of a novel recombinant human soluble thrombomodulin, ART-123. J Thromb Haemost 2:1745–1751

    Article  PubMed  CAS  Google Scholar 

  40. Kearon C, Comp P, Douketis J, et al (2005) Dose-response study of recombinant human soluble thrombomodulin (ART-123) in the prevention of venous thromboembolism after total hip replacement. J Thromb Haemost 3:962–968

    Article  PubMed  CAS  Google Scholar 

  41. Hagiwara S, Iwasaka H, Goto K, et al (2010) Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats. Shock 34:402–406

    Article  PubMed  CAS  Google Scholar 

  42. Saito H, Maruyama I, Shimazaki S, et al (2007) Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost 5:31–41

    Article  PubMed  CAS  Google Scholar 

  43. Kawano N, Yoshida S, Ono N, et al (2011) Clinical features and outcomes of 35 disseminated intravascular coagulation cases treated with recombinant human soluble thrombomodulin at a single institution. J Clin Exp Hematop 51:101–107

    Article  PubMed  Google Scholar 

  44. Ogawa Y, Yamakawa K, Ogura H, et al (2012) Recombinant human soluble thrombomodulin improves mortality and respiratory dysfunction in patients with severe sepsis. J Trauma Acute Care Surg 72:1150–1157

    PubMed  CAS  Google Scholar 

  45. Yamakawa K, Fujimi S, Mohri T, et al (2011) Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study. Crit Care 15:R123

    Article  PubMed  Google Scholar 

  46. Gandrille S (2012) Protéine C activée: de la relation structure-activité à la conception de molécules à propriétés thérapeutiques ciblées. Hématologie 18:96–108

    CAS  Google Scholar 

  47. Mosnier LO, Yang XV, Griffin JH (2007) Activated protein C mutant with minimal anticoagulant activity, normal cytoprotective activity, and preservation of thrombin activable fibrinolysis inhibitor-dependent cytoprotective functions. J Biol Chem 282:33022–33033

    Article  PubMed  CAS  Google Scholar 

  48. Bae JS, Yang L, Manithody C, Rezaie AR (2007) Engineering a disulfide bond to stabilize the calcium-binding loop of activated protein C eliminates its anticoagulant but not its protective signaling properties. J Biol Chem 282:9251–9259

    Article  PubMed  CAS  Google Scholar 

  49. Harmon S, Preston RJ, Ni Ainle F, et al (2008) Dissociation of activated protein C functions by elimination of protein S cofactor enhancement. J Biol Chem 283:30531–30539

    Article  PubMed  CAS  Google Scholar 

  50. Kerschen EJ, Fernandez JA, Cooley BC, et al (2007) Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J Exp Med 204:2439–2448

    Article  PubMed  CAS  Google Scholar 

  51. Isobe H, Okajima K, Uchiba M, et al (2002) Antithrombin prevents endotoxin-induced hypotension by inhibiting the induction of nitric oxide synthase in rats. Blood 99:1638–1645

    Article  PubMed  CAS  Google Scholar 

  52. Cantwell AM, Di Cera E (2000) Rational design of a potent anticoagulant thrombin. J Biol Chem 275:39827–39830

    Article  PubMed  CAS  Google Scholar 

  53. Gruber A, Fernandez JA, Bush L, et al (2006) Limited generation of activated protein C during infusion of the protein C activator thrombin analog W215A/E217A in primates. J Thromb Haemost 4:392–397

    Article  PubMed  CAS  Google Scholar 

  54. Gruber A, Cantwell AM, Di Cera E, Hanson SR (2002) The thrombin mutant W215A/E217A shows safe and potent anticoagulant and antithrombotic effects in vivo. J Biol Chem 277:27581–27584

    Article  PubMed  CAS  Google Scholar 

  55. Flick MJ, Chauhan AK, Frederick M, et al (2011) The development of inflammatory joint disease is attenuated in mice expressing the anticoagulant prothrombin mutant W215A/E217A. Blood 117:6326–6337

    Article  PubMed  CAS  Google Scholar 

  56. Gomez G, Bolton-Maggs P (2008) Factor XI deficiency. Haemophilia 14:1183–1189

    PubMed  CAS  Google Scholar 

  57. Schumacher WA, Seiler SE, Steinbacher TE, et al (2007) Antithrombotic and hemostatic effects of a small molecule factor XIa inhibitor in rats. Eur J Pharmacol 570:167–174

    Article  PubMed  CAS  Google Scholar 

  58. Gruber A, Hanson SR (2003) Factor XI-dependence of surfaceand tissue factor-initiated thrombus propagation in primates. Blood 102:953–955

    Article  PubMed  CAS  Google Scholar 

  59. Zhang H, Lowenberg EC, Crosby JR, et al (2010) Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk. Blood 116:4684–4692

    Article  PubMed  CAS  Google Scholar 

  60. Wuillemin WA, Fijnvandraat K, Derkx BH, et al (1995) Activation of the intrinsic pathway of coagulation in children with meningococcal septic shock. Thromb Haemost 74:1436–1441

    PubMed  CAS  Google Scholar 

  61. Pixley RA, De La Cadena R, Page JD, et al (1993) The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Invest 91:61–68

    Article  PubMed  CAS  Google Scholar 

  62. Tucker EI, Gailani D, Hurst S, et al (2008) Survival advantage of coagulation factor XI-deficient mice during peritoneal sepsis. J Infect Dis 198:271–274

    Article  PubMed  CAS  Google Scholar 

  63. Tucker EI, Verbout NG, Leung PY, et al (2012) Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 119:4762–4768

    Article  PubMed  CAS  Google Scholar 

  64. Itakura A, Verbout NG, Phillips KG, et al (2011) Activated factor XI inhibits chemotaxis of polymorphonuclear leukocytes. J Leukoc Biol 90:923–927

    Article  PubMed  CAS  Google Scholar 

  65. Cottrell GS, Amadesi S, Schmidlin F, Bunnett N (2003) Protease-activated receptor 2: activation, signalling and function. Biochem Soc Trans 31:1191–1197

    Article  PubMed  CAS  Google Scholar 

  66. Welty-Wolf KE, Carraway MS, Ortel TL, et al (2006) Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. Am J Physiol Lung Cell Mol Physiol 290:L21–L31

    Article  PubMed  CAS  Google Scholar 

  67. Morris PE, Steingrub JS, Huang BY, et al (2012) A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome. BMC Pulm Med 12:5

    Article  PubMed  CAS  Google Scholar 

  68. Carraway MS, Welty-Wolf KE, Miller DL, et al (2003) Blockade of tissue factor: treatment for organ injury in established sepsis. Am J Respir Crit Care Med 167:1200–1209

    Article  PubMed  Google Scholar 

  69. Vincent JL, Artigas A, Petersen LC, Meyer C (2009) A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated recombinant factor VIIa in subjects with acute lung injury or acute respiratory distress syndrome. Crit Care Med 37:1874–1880

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Borgel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgel, D., Lerolle, N. Quel avenir pour les médicaments de l’hémostase dans le traitement du sepsis sévère après le Xigris® ?. Réanimation 22, 181–190 (2013). https://doi.org/10.1007/s13546-013-0665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-013-0665-z

Mots clés

Keywords

Navigation