Skip to main content
Log in

Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used here to study the interactions between BmNn graphyne-like monolayers and four different polymer chains. BN, B1N9, and B2N8 graphyne-like monolayers are selected from the family of BmNn graphyne-like monolayers. It is observed that increasing the number of B atoms in the structure of BmNn graphyne-like monolayers results in larger interaction energies of nanosheet/polymer systems. It is also shown that the polymer chains with the linear adsorbed configurations on the nanosheets have larger interaction energies with the nanosheets. Investigating the effect of number of polymer repeat units on the polymer/nanosheet interaction energy, it is observed that increasing the number of repeat units of polymers leads to enhancing the polymer/nanosheet interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 4, 459–464 (2004)

    Article  ADS  Google Scholar 

  2. T.C. Clancy, T.S. Gates, Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47, 5990–5996 (2006)

    Article  Google Scholar 

  3. E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)

    Article  ADS  Google Scholar 

  4. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)

    Article  Google Scholar 

  5. Q. Zheng, D. Xia, Q. Xue, K. Yan, X. Gao, Q. Li, Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube–polyethylene composite system. Appl. Surf. Sci. 255, 3534–3543 (2009)

    Article  ADS  Google Scholar 

  6. N.G. Sahooa, S. Rana, J.W. Cho, L. Li, S.H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867 (2010)

    Article  Google Scholar 

  7. M.M. Rahmana, S. Zainuddin, M.V. Hosur, J.E. Malone, M.B.A. Salama, A. Kumar, S. Jeelani, Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)

    Article  Google Scholar 

  8. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006)

    Article  Google Scholar 

  9. M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Physical interactions at carbon nanotube-polymer interface. Polymer 44, 7757–7764 (2003)

    Article  Google Scholar 

  10. C. Xu, Z. Jia, D. Wu, Q. Han, T. Meek, Fabrication of nylon-6/carbon nanotube composites. J. Electron. Mater. 35, 954–957 (2006)

    Article  ADS  Google Scholar 

  11. J. Hwang, J. Jang, K. Hong, K.N. Kim, J.H. Han, K. Shin, C.E. Park, Poly (3-hexylthiophene) wrapped carbon nanotube/poly (dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49, 106–110 (2011)

    Article  Google Scholar 

  12. W. Gomulya, G.D. Costanzo, E.J.F. de Carvalho, S.Z. Bisri, V. Derenskyi, M. Fritsch, N. Fröhlich, S. Allard, P. Gordiichuk, A. Herrmann, S.J. Marrink, M.C. dos Santos, U. Scherf, M.A. Loi, Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 25, 2948–2956 (2013)

    Article  Google Scholar 

  13. K. Mulla, S. Liang, H. Shaik, E.A. Younes, A. Adronov, Y. Zhao, Dithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes. Chem. Commun. 51, 149–152 (2015)

    Article  Google Scholar 

  14. S.D. Stranks, C.K. Yong, J.A. Alexander-Webber, C. Weisspfennig, M.B. Johnston, L.M. Herz, R.J. Nicholas, Nanoengineering coaxial carbon nanotube–dual-polymer heterostructures. ACS Nano 6, 6058–6066 (2012)

    Article  Google Scholar 

  15. S.S. Spearman, F. Irin, I.V. Rivero, M.J. Green, N. Abidi, Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites. Polymer 56, 476–481 (2015)

    Article  Google Scholar 

  16. P. Gerstel, S. Klumpp, F. Hennrich, A. Poschlad, V. Meded, E. Blasco, W. Wenzel, M.M. Kappes, C. Barner-Kowollik, Highly selective dispersion of single-walled carbon nanotubes via polymer wrapping: a combinatorial study via modular conjugation. ACS Macro Lett. 3, 10–15 (2013)

    Article  Google Scholar 

  17. P. Deria, C.D. Von Bargen, J.H. Olivier, A.S. Kumbhar, J.G. Saven, M.J. Therien, Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers. J. Am. Chem. Soc. 135, 16220–16234 (2013)

    Article  Google Scholar 

  18. Y.H. Xie, A.K. Soh, Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater. Lett. 59, 971–975 (2005)

    Article  Google Scholar 

  19. C. Wei, Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 6, 1627–1631 (2006)

    Article  ADS  Google Scholar 

  20. W. Liu, C.L. Yang, Y.T. Zhu, M. Wang, Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly (phenylacetylene)/poly (p-phenylenevinylene) considering repeat unit arrangements and conformations: a molecular dynamics simulation study. J. Phys. Chem. C112, 1803–1811 (2008)

    Google Scholar 

  21. C. Caddeo, C. Melis, L. Colombo, A. Mattoni, Understanding the helical wrapping of poly (3-hexylthiophene) on carbon nanotubes. J. Phys. Chem. C 114, 21109–21113 (2010)

    Article  Google Scholar 

  22. A. Minoia, L. Chen, D. Beljonne, R. Lazzaroni, Molecular modeling study of the structure and stability of polymer/carbon nanotube interfaces. Polymer 53, 5480–5490 (2012)

    Article  Google Scholar 

  23. J. Gao, M.A. Loi, E.J.F. de Carvalho, M.C. dos Santos, Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS Nano 5, 3993–3999 (2011)

    Article  Google Scholar 

  24. C.D. Von Bargen, C.M. Mac Dermaid, O.S. Lee, P. Deria, M.J. Therien, J.G. Saven, Origins of the helical wrapping of Phenyleneethynylene polymers about single-walled carbon nanotubes. J. Phys. Chem. B 117, 12953–12965 (2013)

    Article  Google Scholar 

  25. Y. Zhang, J. Zhao, N. Wei, J. Jiang, Y. Gong, T. Rabczuk, Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer. Compos. Part B 45, 1714–1721 (2013)

    Article  Google Scholar 

  26. S. Rouhi, Y. Alizadeh, R. Ansari, On the wrapping of poly (phenylacetylene), polystyrene sulfonate and polyvinyl pyrrolidone polymer chains around single-walled carbon nanotubes using molecular dynamics simulations. Fibers and Polymers 15, 1123–1128 (2014)

    Article  Google Scholar 

  27. S. Rouhi, Y. Alizadeh, R. Ansari, On the wrapping of polyglycolide, poly (ethylene oxide), and polyketone polymer chains around single-walled carbon nanotubes using molecular dynamics simulations. Braz. J. Phys. 45, 10–18 (2015)

    Article  ADS  Google Scholar 

  28. S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations. Appl. Surf. Sci. 292, 958–970 (2014)

    Article  ADS  Google Scholar 

  29. S. Rouhi, Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers and Polymers 17, 333–342 (2016)

    Article  Google Scholar 

  30. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  31. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879 (1988)

    Article  ADS  Google Scholar 

  32. C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)

    Article  ADS  Google Scholar 

  33. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  34. C.Y. Won, S. Joseph, N.R. Aluru, Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J. Chem. Phys. 125, 114701 (2006)

    Article  ADS  Google Scholar 

  35. T.A. Hilder, R. Yang, V. Ganesh, D. Gordon, A. Bliznyuk, A.P. Rendell, S.H. Chung, Validity of current force fields for simulations on boron nitride nanotubes. Micro & Nano Letters 5, 150–156 (2010)

    Article  Google Scholar 

  36. S. Maruyama, T. Kimura, Molecular dynamics simulation of hydrogen storage in single-walled carbon nanotubes, in 2000 ASME Intern. Mech. Eng. Congr. and Exhibit. 405–409 (2000)

  37. M.P. Allen, D. J. Tildesley, Computer simulation of liquids, 1st edn. (Oxford university press, Great Britain, 1989)

  38. LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov. Accessed 10 April 2014

  39. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  40. S.S. Tallury, M.A. Pasquinelli, Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes. J. Phys. Chem. B 114, 9349–9355 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, S., Atfi, A. Molecular Dynamics Simulations of Adsorption of Polymer Chains on the Surface of BmNn Graphyne-Like Monolayers. Braz J Phys 47, 239–267 (2017). https://doi.org/10.1007/s13538-017-0491-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-017-0491-2

Keywords

Navigation