Skip to main content
Log in

Generating Pseudo-Random Discrete Probability Distributions

About the iid, Normalization, and Trigonometric Methods

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The generation of pseudo-random discrete probability distributions is of paramount importance for a wide range of stochastic simulations spanning from Monte Carlo methods to the random sampling of quantum states for investigations in quantum information science. In spite of its significance, a thorough exposition of such a procedure is lacking in the literature. In this article, we present relevant details concerning the numerical implementation and applicability of what we call the iid, normalization, and trigonometric methods for generating an unbiased probability vector p=(p 1,⋯ ,p d). An immediate application of these results regarding the generation of pseudo-random pure quantum states is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.J. Bennett. Randomness (Harvard University Press, Cambridge, 1998)

    MATH  Google Scholar 

  2. L. Mlodinow. The Drunkard’s walk: How randomness rules our lives (Pantheon Books, New York, 2008)

    Google Scholar 

  3. M. Bell, K. Gottfried, M. Veltman. John Bell on the foundations of quantum mechanics (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  4. M.H. DeGroot. Probability and statistics (Addison-Wesley, Reading, 1975)

    MATH  Google Scholar 

  5. E.T. Jaynes. Probability Theory: The Logic of Science (Cambridge University Press, New York, 2003)

    Book  Google Scholar 

  6. D.P. Landau, K. Binder. A guide to Monte Carlo simulations in statistical Physics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  7. T.M. Cover, J.A. Thomas. Elements of Information Theory (Wiley, New Jersey, 2006)

    MATH  Google Scholar 

  8. M.A. Carlton, J.L. Devore. Probability with Applications in Engineering, Science, and Technology (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  9. H.V. Ribeiro, E.K. Lenzi, R.S. Mendes, G.A. Mendes, L.R. da Silva, Symbolic sequences and Tsallis entropy. Braz. J. Phys. 39, 444 (2009)

    Article  ADS  Google Scholar 

  10. Á.L. Rodrigues, M.J. de Oliveira, Continuous time stochastic models for vehicular traffic on highways. Braz. J. Phys. 34, 1 (2004)

    Article  Google Scholar 

  11. F.J. Resende, B.V. Costa, Using random number generators in Monte Carlo simulations. Phys. Rev. E. 58, 5183 (1998)

    Article  ADS  Google Scholar 

  12. K.C. Mundim, D.E. Ellis, Stochastic classical molecular dynamics coupled to functional density theory: Applications to large molecular systems. Braz. J. Phys. 29, 199 (1999)

    Article  ADS  Google Scholar 

  13. M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  14. M.M. Wilde. Quantum Information Theory (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  15. J. Maziero, R. Auccaise, L.C. Celeri, D.O. Soares-Pinto, E.R. deAzevedo, T.J. Bonagamba, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43, 86 (2013)

    Article  ADS  Google Scholar 

  16. A. Peres. Quantum Theory: Concepts and methods (Kluwer, New York, 2002)

    Book  Google Scholar 

  17. J.J. Sakurai, J. Napolitano. Modern Quantum Mechanics, 2nd edn (Pearson education, San Francisco, 2011)

    Google Scholar 

  18. J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A. 300, 573 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. R.V. Ramos, Numerical algorithms for use in quantum information. J. Comput. Phys. 192, 95 (2003)

    Article  MATH  ADS  Google Scholar 

  20. D. Girolami, G. Adesso, Observable measure of bipartite quantum correlations. Phys. Rev. Lett. 108, 150403 (2012)

    Article  ADS  Google Scholar 

  21. D. Girolami, G. Adesso, Quantum discord for general two-qubit states: Analytical progress. Phys. Rev. A. 83, 052108 (2011)

    Article  ADS  Google Scholar 

  22. J. Batle, M. Casas, A.R. Plastino, A. Plastino, Entanglement, mixedness, and q-entropies. Phys. Lett. A. 296, 251 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. Batle, A.R. Plastino, M. Casas, A. Plastino, On the entanglement properties of two-rebits systems. Phys. Lett. A. 298, 301 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. J. Batle, M. Casas, A. Plastino, A.R. Plastino, Maximally entangled mixed states and conditional entropies. Phys. Rev. A. 71, 024301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Roncaglia, A. Montorsi, M. Genovese, Bipartite entanglement of quantum states in a pair basis. Phys. Rev. A. 90, 062303 (2014)

    Article  ADS  Google Scholar 

  26. S. Vinjanampathy, A.R.P. Rau, Quantum discord for qubit–qudit systems. J. Phys. A: Math. Theor. 45, 095303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. X.-M. Lu, J. Ma, Z. Xi, X. Wang, Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A. 83, 012327 (2011)

    Article  ADS  Google Scholar 

  28. F.M. Miatto, K. Piché, T. Brougham, R.W. Boyd, Recovering full coherence in a qubit by measuring half of its environment, arXiv:1502.07030

  29. J. Shang, Y.-L. Seah, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)

    Article  ADS  Google Scholar 

  30. Y.-L. Seah, J. Shang, H.K. Ng, D.J. Nott, B.-G. Englert, Monte Carlo sampling from the quantum state space. II. New J. Phys. 17, 043018 (2015)

    Article  ADS  Google Scholar 

  31. G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. K. życzkowski, M. Kuś, J. Phys. A. Math. Gen. 27, 4235 (1994)

    Article  ADS  Google Scholar 

  33. E. Brüning, H. Mäkelä, A. Messina, F. Petruccione, Parametrizations of density matrices. J. Mod. Opt. 59, 1 (2012)

    Article  ADS  Google Scholar 

  34. J. Emerson, Y.S. Weinstein, M. Saraceno, S. Lloyd, D.G. Cory, Pseudo-random unitary operators for quantum information processing. Science. 302, 2098 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A. 57, 1619 (1998)

    Article  ADS  Google Scholar 

  36. K. życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Volume of the set of separable states. Phys. Rev. A. 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Radtke, S. Fritzsche, Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions. Comput. Phys. Comm. 179, 647 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Sim. 8, 3 (1998)

    Article  MATH  Google Scholar 

  39. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, O. Benson, An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)

    Article  ADS  Google Scholar 

  40. J.A. Miszczak, Employing online quantum random number generators for generating truly random quantum states in Mathematica. Comput. Phys. Comm. 184, 257 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ). We thank the Group of Quantum Information and Emergent Phenomena and the Group of Condensed Matter Theory at Universidade Federal de Santa Maria for stimulating discussions. We also thank the Referee for his(her) constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziero, J. Generating Pseudo-Random Discrete Probability Distributions. Braz J Phys 45, 377–382 (2015). https://doi.org/10.1007/s13538-015-0337-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0337-8

Keywords

Navigation