Skip to main content
Log in

Optimizing electrode placement for transcranial direct current stimulation in nonsuperficial cortical regions: a computational modeling study

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique for modulating neuronal excitability by sending a weak current through electrodes attached to the scalp. For decades, the conventional tDCS electrode for stimulating the superficial cortex has been widely reported. However, the investigation of the optimal electrode to effectively stimulate the nonsuperficial cortex is still lacking. In the current study, the optimal tDCS electrode montage that can deliver the maximum electric field to nonsuperficial cortical regions is investigated. Two finite element head models were used for computational simulation to determine the optimal montage for four different nonsuperficial regions: the left foot motor cortex, the left dorsomedial prefrontal cortex (dmPFC), the left medial orbitofrontal cortex (mOFC), and the primary visual cortex (V1). Our findings showed a good consistency in the optimal montage between two models, which led to the anode and cathode being attached to C4–C3 for the foot motor, F4–F3 for the dmPFC, Fp2–F7 for the mOFC, and Oz–Cz for V1. Our suggested montages are expected to enhance the overall effectiveness of stimulation of nonsuperficial cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Please contact the corresponding author (sangjunlee35@gmail.com) for data requests.

References

  1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liebetanz D, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation‐induced after‐effects of human motor cortex excitability. Brain. 2002;125(10):2238–47.

    Article  PubMed  Google Scholar 

  3. Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9(2):197–208.

    Article  PubMed  Google Scholar 

  4. Nissim NR, et al. Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Front Aging Neurosci. 2019;11: 340.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ouellet J, et al. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): a randomized and sham-controlled exploratory study. J Psychiatr Res. 2015;69:27–34.

    Article  PubMed  Google Scholar 

  6. Razza LB, et al. A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety. 2020;37(7):594–608.

    Article  PubMed  Google Scholar 

  7. Yang D, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study. Brain Stimul. 2020;13(1):109–16.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  8. Beretta VS, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J Neuroeng Rehabil. 2020;17(1):1–15.

    Article  Google Scholar 

  9. Chhatbar PY, et al. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose–response relationship. Brain Stimul. 2016;9(1):16–26.

    Article  PubMed  Google Scholar 

  10. Mahmoudi H, et al. Transcranial direct current stimulation: electrode montage in stroke. Disabil Rehabil. 2011;33(15–16):1383–8.

    Article  PubMed  Google Scholar 

  11. Caulfield KA, George MS. Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep. 2022;12(1):20116.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Galletta EE, et al. Use of computational modeling to inform tDCS electrode montages for the promotion of language recovery in post-stroke aphasia. Brain Stimul. 2015;8(6):1108–15.

    Article  PubMed  Google Scholar 

  13. Seibt O, et al. The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul. 2015;8(3):590–602.

    Article  PubMed  Google Scholar 

  14. Lee M, et al. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation? Neurosci Lett. 2015;584:347–50.

    Article  CAS  PubMed  Google Scholar 

  15. Xu P, et al. Medial prefrontal cortex in neurological diseases. Physiol Genom. 2019;51(9):432–42.

    Article  CAS  Google Scholar 

  16. Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol. 2018;49:33–41.

    Article  CAS  PubMed  Google Scholar 

  17. Hasz BM, Redish AD. Dorsomedial prefrontal cortex and hippocampus represent strategic context even while simultaneously changing representation throughout a task session. Neurobiol Learn Mem. 2020;171: 107215.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhaoping L. A new framework for understanding vision from the perspective of the primary visual cortex. Curr Opin Neurobiol. 2019;58:1–10.

    Article  CAS  PubMed  Google Scholar 

  19. Windhoff M, Opitz A, Thielscher A. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp. 2013;34(4):923–35.

    Article  PubMed  Google Scholar 

  20. Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–11.

    Article  PubMed  Google Scholar 

  21. Angulo-Sherman IN, et al. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power. J Neuroeng Rehabil. 2017;14(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Junghofer M, et al. Noninvasive stimulation of the ventromedial prefrontal cortex enhances pleasant scene processing. Cereb Cortex. 2017;27(6):3449–56.

    Article  PubMed  Google Scholar 

  23. Martin A, et al. Dissociable roles within the social brain for self–other processing: a HD-tDCS study. Cerebral Cortex. 2018;29:3642.

    Article  Google Scholar 

  24. Opitz A, et al. Determinants of the electric field during transcranial direct current stimulation. Neuroimage. 2015;109:140–50.

    Article  PubMed  Google Scholar 

  25. Jung Y-J, Kim J-H, Im C-H. COMETS: a MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed Eng Lett. 2013;3(1):39–46.

    Article  Google Scholar 

  26. Lee C, et al. COMETS2: an advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods. 2017;277:56–62.

    Article  PubMed  Google Scholar 

  27. Madhavan S, Stinear JW. Focal and bidirectional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimul. 2010;3(1):42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nitsche MA, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  29. Willis ML, et al. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition. Soc Cognit Affect Neurosci. 2015;10(12):1677–83.

    Article  Google Scholar 

  30. Antal A, et al. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Investig Ophthalmol Vis Sci. 2004;45(2):702–7.

    Article  Google Scholar 

  31. Bindman LJ, Lippold O, Redfearn J. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172(3):369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koganemaru S, et al. Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait. PLoS ONE. 2018;13(12): e0208691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin AK, et al. Causal evidence for task-specific involvement of the dorsomedial prefrontal cortex in human social cognition. Soc Cognit Affect Neurosci. 2017;12(8):1209–18.

    Article  Google Scholar 

  34. Accornero N, et al. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178(2):261–6.

    Article  PubMed  Google Scholar 

  35. Viganò A, et al. Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain. 2013;14(1): 23.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rawji V, et al. tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimul. 2018;11(2):289–98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fox PT, et al. Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp. 2004;22(1):1–14.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  38. Wagner T, et al. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.

    Article  PubMed  Google Scholar 

  39. Suh HS, Lee WH, Kim T-S. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model. Phys Med Biol. 2012;57(21): 6961.

    Article  PubMed  Google Scholar 

  40. Shahid SS, et al. The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J Neural Eng. 2014;11(3): 036002.

    Article  MathSciNet  PubMed  Google Scholar 

  41. Bai S, et al. A computational modelling study of transcranial direct current stimulation montages used in depression. Neuroimage. 2014;87:332–44.

    Article  PubMed  Google Scholar 

  42. Laakso I, et al. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13.

    Article  PubMed  Google Scholar 

  43. Guler S, et al. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J Neural Eng. 2016;13(3): 036020.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fischer D, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. NeuroImage. 2017;157:34–44.

    Article  CAS  PubMed  Google Scholar 

  45. Ruffini G, et al. Targeting brain networks with multichannel transcranial current stimulation (tCS). Curr Opin Biomed Eng. 2018;8:70–7.

    Article  Google Scholar 

  46. Loo CK, et al. International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimul. 2018;11(1):125–33.

    Article  PubMed  Google Scholar 

  47. Adenzato M, et al. Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study. Translational Neurodegener. 2019;8(1):1.

    Article  Google Scholar 

  48. Mazzoleni S, et al. Effects of transcranial direct current stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1458.

    Article  PubMed  Google Scholar 

  49. Li J, et al. Transcranial stimulation over the medial prefrontal cortex increases money illusion. J Econ Psychol. 2023;99: 102665.

    Article  Google Scholar 

  50. van Asseldonk EH, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimul. 2016;9(2):182–90.

    Article  PubMed  Google Scholar 

  51. Adams TG, et al. Transcranial direct current stimulation targeting the medial prefrontal cortex modulates functional connectivity and enhances safety learning in obsessive-compulsive disorder: results from two pilot studies. Depress Anxiety. 2022;39(1):37–48.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF- 339-20150006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D.S., Lee, S. Optimizing electrode placement for transcranial direct current stimulation in nonsuperficial cortical regions: a computational modeling study. Biomed. Eng. Lett. 14, 255–265 (2024). https://doi.org/10.1007/s13534-023-00335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00335-2

Keywords

Navigation