Skip to main content
Log in

Transcranial application of magnetic pulses for improving brain drug delivery efficiency via intranasal injection of magnetic nanoparticles

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

As the blood–brain barrier (BBB) hinders efficient drug delivery to the brain, drug delivery via the intranasal pathway, bypassing the BBB, has received considerable attention. However, intranasal administration still has anatomical and physiological limitations, necessitating further solutions to enhance effectiveness. In this study, we used transcranial magnetic stimulation (TMS) on fluorescent magnetic nanoparticles (MNPs) of different sizes (50, 100, and 300 nm) to facilitate MNP’s transportation and delivery to the brain parenchyma. To validate this concept, anesthetized rats were intranasally injected with the MNPs, and TMS was applied to the center of the head. As the result, a two-fold increase in brain MNP delivery was achieved using TMS compared with passive intranasal administration. In addition, histological analysis that was performed to investigate the safety revealed no gross or microscopic damages to major organs caused by the nanoparticles. While future studies should establish the delivery conditions in humans, we expect an easy clinical translation in terms of device safety, similar to the use of conventional TMS. The strategy reported herein is the first critical step towards effective drug transportation to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol. 2012;7:383–94. https://doi.org/10.2217/fmb.12.1.

    Article  Google Scholar 

  2. Patel JP, Frey BN. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder? Neural Plast. 2015;2015:708306. https://doi.org/10.1155/2015/708306.

    Article  Google Scholar 

  3. Selvaraj K, Gowthamarajan K, Karri VVSR. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018;46:2088–95. https://doi.org/10.1080/21691401.2017.1420073.

    Article  Google Scholar 

  4. Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood brain barrier. Pharmaceutics. 2021;13. https://doi.org/10.3390/pharmaceutics13122049.

  5. Mohseni M, Connell JJ, Payne C, Patrick PS, Baker R, Yu Y, Siow B, Zaw-Thin M, Kalber TL, Pankhurst QA, Lythgoe MF. Scalable magnet geometries enhance tumour targeting of magnetic nano-carriers. Mater Des. 2020;191:108610. https://doi.org/10.1016/j.matdes.2020.108610.

    Article  Google Scholar 

  6. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72. https://doi.org/10.1038/jcbfm.2012.126.

    Article  Google Scholar 

  7. Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharm Sin B. 2021;11:925–40. https://doi.org/10.1016/j.apsb.2021.02.012.

    Article  Google Scholar 

  8. Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379:146–57. https://doi.org/10.1016/j.ijpharm.2009.06.019.

    Article  Google Scholar 

  9. Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schiöth HB, et al. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30:2475–84. https://doi.org/10.1007/s11095-012-0915-1.

  10. Sabir F, Ismail R, Csoka I. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: Status quo and outlook. Drug Discov Today. 2020;25:185–94. https://doi.org/10.1016/j.drudis.2019.10.005.

    Article  Google Scholar 

  11. Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm. 2018;548:609–24. https://doi.org/10.1016/j.ijpharm.2018.07.014.

    Article  Google Scholar 

  12. Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine. 2012;7:5705–18. https://doi.org/10.2147/IJN.S35329.

    Article  Google Scholar 

  13. Alexander A, Saraf S. Nose-to-brain drug delivery approach: a key to easily accessing the brain for the treatment of Alzheimer’s disease. Neural Regen Res. 2018;13:2102–4. https://doi.org/10.4103/1673-5374.241458.

    Article  Google Scholar 

  14. Alavian F, Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: considering its advantages and disadvantages. Curr Clin Pharmacol. 2020;15:20–9. https://doi.org/10.2174/1574884714666190704115345.

    Article  Google Scholar 

  15. Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L. Bhavna. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16:1644–53. https://doi.org/10.2174/138161210791164108.

    Article  Google Scholar 

  16. Seo HI, Cheon YA, Chung BG. Graphene and thermo-responsive polymeric nanocomposites for therapeutic applications. Biomed Eng Lett. 2016;6:10–5. https://doi.org/10.1007/s13534-016-0214-6.

    Article  Google Scholar 

  17. Si XA, Xi J, Kim J, Zhou Y, Zhong H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respir Physiol Neurobiol. 2013;186:22–32. https://doi.org/10.1016/j.resp.2012.12.005.

    Article  Google Scholar 

  18. Hour FQ, Moghadam AJ, Shakeri-Zadeh A, Bakhtiyari M, Shabani R, Mehdizadeh M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J Control Release. 2020;321:430–41. https://doi.org/10.1016/j.jconrel.2020.02.035.

    Article  Google Scholar 

  19. Thébault CJ, Ramniceanu G, Boumati S, Michel A, Seguin J, Larrat B, Mignet N, Menager C, Doan BT. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J Control Release. 2020;322:137–48. https://doi.org/10.1016/j.jconrel.2020.03.003.

    Article  Google Scholar 

  20. Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomedicine. 2015;10:1211–22. https://doi.org/10.2147/IJN.S77520.

    Article  Google Scholar 

  21. Raut SL, Kirthivasan B, Bommana MM, Squillante E, Sadoqi M. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Nanotechnology. 2010;21:395102. https://doi.org/10.1088/0957-4484/21/39/395102.

    Article  Google Scholar 

  22. Alexiou C, Jurgons R, Schmid R, Hilpert A, Bergemann C, Parak F, Iro H. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater. 2005;293:389–93. https://doi.org/10.1016/j.jmmm.2005.02.036.

    Article  Google Scholar 

  23. Nacev A, Weinberg IN, Stepanov PY, Kupfer S, Mair LO, Urdaneta MG, Shimoji M, Fricke ST, Shapiro B. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 2015;15:359–64. https://doi.org/10.1021/nl503654t.

    Article  Google Scholar 

  24. Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6:1145–55. https://doi.org/10.4155/tde.15.56.

    Article  Google Scholar 

  25. Rogers HB, Anani T, Choi YS, Beyers RJ, David AE. Exploiting size-dependent drag and magnetic forces for size-specific separation of magnetic nanoparticles. Int J Mol Sci. 2015;16:20001–19. https://doi.org/10.3390/ijms160820001.

    Article  Google Scholar 

  26. Shinkai M. Functional magnetic particles for medical application. J Biosci Bioeng. 2002;94:606–13. https://doi.org/10.1016/S1389-1723(02)80202-X.

    Article  Google Scholar 

  27. Fernández-Pacheco R, Marquina C, Gabriel Valdivia J, Gutiérrez M, Soledad Romero M, Cornudella R, et al. Magnetic nanoparticles for local drug delivery using magnetic implants. J Magn Magn Mater. 2007;311:318–22. https://doi.org/10.1016/j.jmmm.2006.11.192.

    Article  Google Scholar 

  28. Al-Jamal KT, Bai J, Wang JT, Protti A, Southern P, Bogart L, Heidari H, Li X, Cakebread A, Asker D, Al-Jamal WT, Shah A, Bals S, Sosabowski J, Pankhurst QA. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 2016;16:5652–60. https://doi.org/10.1021/acs.nanolett.6b02261.

    Article  Google Scholar 

  29. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013;6:1–13. https://doi.org/10.1016/j.brs.2012.02.005.

    Article  Google Scholar 

  30. Ueno S, Sekino M. Figure-eight coils for magnetic stimulation: from focal stimulation to deep stimulation. Front Hum Neurosci. 2021;15:805971. https://doi.org/10.3389/fnhum.2021.805971. Figure-Eight.

    Article  Google Scholar 

  31. Samoudi AM, Tanghe E, Martens L, Joseph W. Deep transcranial magnetic stimulation: improved coil design and assessment of the induced fields using MIDA model. BioMed Res Int. 2018;2018:7061420. https://doi.org/10.1155/2018/7061420.

    Article  Google Scholar 

  32. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM. The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip. 2007;7:1294–302. https://doi.org/10.1039/b705045c.

    Article  Google Scholar 

  33. Lee J, Lee AY. Transcranial magnetic stimulation parameters as neurophysiological biomarkers in Alzheimer’s disease. Annals Clin Neurophysiol. 2021;23:7–16. https://doi.org/10.14253/acn.2021.23.1.7.

    Article  Google Scholar 

  34. Ter Braack EM, de Goede AA, van Putten MJAM. Resting motor threshold, MEP and TEP variability during daytime. Brain Topogr. 2019;32:17–27. https://doi.org/10.1007/s10548-018-0662-7.

    Article  Google Scholar 

  35. Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmoller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol. 2021;132:269–306. https://doi.org/10.1016/j.clinph.2020.10.003.

    Article  Google Scholar 

  36. McCann H, Pisano G, Beltrachini L. Variation in reported human head tissue electrical conductivity values. Brain Topogr. 2019;32:825–58. https://doi.org/10.1007/s10548-019-00710-2.

    Article  Google Scholar 

  37. Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kuhl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7:4557–76.

    Google Scholar 

  38. Grehl S, Martina D, Goyenvalle C, Deng ZD, Rodger J, Sherrard RM. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields. Front Neural Circuits. 2016;10:85. https://doi.org/10.3389/fncir.2016.00085.

    Article  Google Scholar 

  39. Lee MJ, Veiseh O, Bhattarai N, Sun C, Hansen SJ, Ditzler S, Knoblaugh S, Lee D, Ellenbogen R, Zhang M, Olson JM. Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS ONE. 2010;5:e9536. https://doi.org/10.1371/journal.pone.0009536.

    Article  Google Scholar 

  40. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70. https://doi.org/10.1038/nbt1340.

    Article  Google Scholar 

  41. Ye E, Lee S, Park W, Park E, Cho DW, Jang J, Park SM. In vitro study of neurochemical changes following low-intensity magnetic stimulation. IEEE Access. 2020;8:194363–72. https://doi.org/10.1109/ACCESS.2020.3033029.

    Article  Google Scholar 

  42. Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. Nanoscale. 2016;8:9310–7. https://doi.org/10.1039/c6nr01884j.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2022M3C1A3081294), National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2005385 and 2022R1A2C2092821), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03047902).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectually to the research. Eunbi Ye and Eunkyoung Park designed this study. The experiments were performed by Eunbi Ye and supported by Eunseon Kim. Jung Eun Lee provided advices for the experiments. All results were analyzed by Eunbi Ye, who also prepared the manuscript. Sung-Min Park, Eunkyoung Park, and Seung Ho Yang reviewed the manuscript critically for its intellectual content. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Seung Ho Yang or Sung-Min Park.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

All animal research procedures have been approved by the Pohang University of Science and Technology Institutional Animal Care and Use Committee (POSTECH-2021-0117).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, E., Park, E., Kim, E. et al. Transcranial application of magnetic pulses for improving brain drug delivery efficiency via intranasal injection of magnetic nanoparticles. Biomed. Eng. Lett. 13, 417–427 (2023). https://doi.org/10.1007/s13534-023-00272-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00272-0

Keywords

Navigation