Skip to main content
Log in

Cellular and biomolecular detection based on suspended microchannel resonators

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2022

This article has been updated

Abstract

Suspended microchannel resonators (SMRs) have been developed to measure the buoyant mass of single micro-/nanoparticles and cells suspended in a liquid. They have significantly improved the mass resolution with the aid of vacuum packaging and also increased measurement throughput by fast resonance frequency tracking while target objects travel through the microchannel without stopping or even slowing down. Since their invention, various biological applications have been enabled, including simultaneous measurements of cell growth and cell cycle progression, and measurements of disease associated physicochemical change, to name a few. Extension and advancement towards other promising applications with SMRs are continuously ongoing by adding multiple functionalities or incorporating other complementary analytical metrologies. In this paper, we will thoroughly review the development history, basic and advanced operations, and key applications of SMRs to introduce them to researchers working in biological and biomedical sciences who mostly rely on classical and conventional methodologies. We will also provide future perspectives and projections for SMR technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Lue N, Choi W, Popescu G, et al. Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl Opt. 2007;46:1836. https://doi.org/10.1364/AO.46.001836.

    Article  Google Scholar 

  2. Joo C, Akkin T, Cense B, et al. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett. 2005;30:2131. https://doi.org/10.1364/ol.30.002131.

    Article  Google Scholar 

  3. Curl C, Harris T, Harris P, et al. Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ. Pflügers Arch. 2004;448:462–8. https://doi.org/10.1007/s00424-004-1248-7.

    Article  Google Scholar 

  4. Chalut K, Brown W, Terry N, Wax A. Quantitative phase microscopy with asynchronous digital holography system. Opt InfoBase Conf Pap. 2007;15:3047–52.

    Google Scholar 

  5. Gertler R, Rosenberg R, Fuehrer K, et al. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. In: Allgayer H, Heiss MM, Schildberg FW (eds) Molecular Staging of Cancer. Springer Berlin Heidelberg, Berlin, Heidelberg. 2003;162. https://doi.org/10.1007/978-3-642-59349-9_13.

  6. Rosenberg R, Gertler R, Friederichs J, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49:150–8. https://doi.org/10.1002/cyto.10161.

    Article  Google Scholar 

  7. Mori K, Oura T, Noma H, Matsui S. Cancer outlier analysis based on mixture modeling of gene expression data. Comput Math Methods Med. 2013;2013:693901. https://doi.org/10.1155/2013/693901.

    Article  MATH  Google Scholar 

  8. Lopes MB, Veríssimo A, Carrasquinha E, et al. Ensemble outlier detection and gene selection in triple-negative breast cancer data. BMC Bioinformatics. 2018;19:168. https://doi.org/10.1186/s12859-018-2149-7.

    Article  Google Scholar 

  9. Rieseberg M, Kasper C, Reardon KF, Scheper T. Flow cytometry in biotechnology. Appl Microbiol Biotechnol. 2001;56:350–60. https://doi.org/10.1007/s002530100673.

    Article  Google Scholar 

  10. Darzynkiewicz Z, Bedner E, Smolewski P. Flow cytometry in analysis of cell cycle and apoptosis. Semin Hematol. 2001;38:179–93. https://doi.org/10.1016/S0037-1963(01)90051-4.

    Article  Google Scholar 

  11. Abuhattum S, Kim K, Franzmann TM, et al. Intracellular mass density increase is accompanying but not sufficient for stiffening and growth arrest of yeast cells. Front Phys. 2018;6:131. https://doi.org/10.3389/fphy.2018.00131.

    Article  Google Scholar 

  12. Park K, Millet LJ, Kim N, et al. Measurement of adherent cell mass and growth. Proc Natl Acad Sci. 2010;107:20691–6. https://doi.org/10.1073/pnas.1011365107.

    Article  Google Scholar 

  13. Martínez-Martín D, Fläschner G, Gaub B, et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature. 2017;550:500–5. https://doi.org/10.1038/nature24288.

    Article  Google Scholar 

  14. Burg TP, Manalis SR. Suspended microchannel resonators for biomolecular detection. Appl Phys Lett. 2003;83:2698–700. https://doi.org/10.1063/1.1611625.

    Article  Google Scholar 

  15. Godin M, Bryan AK, Burg TP, et al. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett. 2007;91:123121. https://doi.org/10.1063/1.2789694.

    Article  Google Scholar 

  16. Shaw Bagnall J, Byun S, Begum S, et al. Deformability of tumor cells versus blood cells. Sci Rep. 2015;5:18542. https://doi.org/10.1038/srep18542.

    Article  Google Scholar 

  17. Stevens MM, Maire CL, Chou N, et al. Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol. 2016;34:1161–7. https://doi.org/10.1038/nbt.3697.

    Article  Google Scholar 

  18. Enoksson P, Stemme G, Stemme E. Silicon tube structures for a fluid-density sensor. Sensors Actuators, A Phys. 1996;54:558–62. https://doi.org/10.1016/S0924-4247(97)80014-3.

    Article  Google Scholar 

  19. Westberg D, Paul O, Andersson GI, Baltes H. CMOS-compatible device for fluid density measurements fabricated by sacrificial aluminum etching. Sensors Actuators, A Phys. 1999;73:243–51. https://doi.org/10.1016/S0924-4247(98)00225-8.

    Article  Google Scholar 

  20. Corman T, Enoksson P, Norén K, Stemme G. A low-pressure encapsulated resonant fluid density sensor with feedback control electronics. Meas Sci Technol. 2000;11:205–11. https://doi.org/10.1088/0957-0233/11/3/306.

    Article  Google Scholar 

  21. Burg TP, Mirza AR, Milovic N, et al. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. J Microelectromechanical Syst. 2006;15:1466–76. https://doi.org/10.1109/JMEMS.2006.883568.

    Article  Google Scholar 

  22. von Muhlen MG, Brault ND, Knudsen SM, et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem. 2010;82:1905–10. https://doi.org/10.1021/ac9027356.

    Article  Google Scholar 

  23. Miettinen T, Manalis S. Unravelling the secrets of the cell with suspended microchannel resonators. Res Outreach. 2019; https://doi.org/10.32907/RO-110-4245.

  24. Etayash H, Khan MF, Kaur K, Thundat T. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun. 2016;7:12947. https://doi.org/10.1038/ncomms12947.

    Article  Google Scholar 

  25. Czaplewski DA, Kameoka J, Mathers R, et al. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl Phys Lett. 2003;83:4836–8. https://doi.org/10.1063/1.1633008.

    Article  Google Scholar 

  26. Barton RA, Ilic B, Verbridge SS, et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 2010;10:2058–63. https://doi.org/10.1021/nl100193g.

    Article  Google Scholar 

  27. Kim J, Song J, Kim K, et al. Hollow microtube resonators via silicon self-assembly toward subattogram mass sensing applications. Nano Lett. 2016;16:1537–45. https://doi.org/10.1021/acs.nanolett.5b03703.

    Article  Google Scholar 

  28. Gagino M, Katsikis G, Olcum S, et al. Suspended nanochannel resonator arrays with piezoresistive sensors for high-throughput weighing of nanoparticles in solution. ACS Sensors. 2020;5:1230–8. https://doi.org/10.1021/acssensors.0c00394.

    Article  Google Scholar 

  29. Lee J, Shen W, Payer K, et al. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 2010;10:2537–42. https://doi.org/10.1021/nl101107u.

    Article  Google Scholar 

  30. Kant R, Ziaei-Moayyed M, Howe RT. Suspended microstructures made using silicon migration. TRANSDUCERS 2009 5th Int Conf Solid-State Sensors, Actuators Microsystems. 2009;1091–4. https://doi.org/10.1109/SENSOR.2009.5285949.

  31. Sato T, Mizushima I, Taniguchi S, et al. Fabrication of silicon-on-nothing structure by substrate engineering using the empty-space-in-silicon formation technique. Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap. 2004;43:12-18. https://doi.org/10.1143/JJAP.43.12.

  32. Mesbah Oskui S, Bhakta HC, Diamante G, et al. Measuring the mass, volume, and density of microgram-sized objects in fluid. PLoS ONE. 2017;12:e0174068. https://doi.org/10.1371/journal.pone.0174068.

    Article  Google Scholar 

  33. Martín-Pérez A, Ramos D, Gil-Santos E, et al. Mechano-optical analysis of single cells with transparent microcapillary resonators. ACS Sensors. 2019;4:3325–32. https://doi.org/10.1021/acssensors.9b02038.

    Article  Google Scholar 

  34. Ko J, Lee D, Lee BJ, et al. Micropipette resonator enabling targeted aspiration and mass measurement of single particles and cells. ACS Sensors. 2019;4:3275–82. https://doi.org/10.1021/acssensors.9b01843.

    Article  Google Scholar 

  35. Maillard D, De Pastina A, Abazari AM, Villanueva LG. Avoiding transduction-induced heating in suspended microchannel resonators using piezoelectricity. Microsystems Nanoeng. 2021;7:34. https://doi.org/10.1038/s41378-021-00254-1.

    Article  Google Scholar 

  36. Olcum S, Cermak N, Wasserman SC, Manalis SR. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions. Nat Commun. 2015;6:7070. https://doi.org/10.1038/ncomms8070.

    Article  Google Scholar 

  37. Lee J, Chunara R, Shen W, et al. Suspended microchannel resonators with piezoresistive sensors. Lab Chip.2011;11:645-51. https://doi.org/10.1039/c0lc00447b

  38. De Pastina A, Maillard D, Özel Duygan B, et al. Single bacteria detection via piezoelectric suspended microchannel resonators. In: 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019). 2019;

  39. De Pastina A, Maillard D, Villanueva LG. Fabrication of suspended microchannel resonators with integrated piezoelectric transduction. Microelectron Eng. 2018;192:83–7. https://doi.org/10.1016/j.mee.2018.02.011.

    Article  Google Scholar 

  40. Vidal-Álvarez G, Marigó E, Torres F, Barniol N. Fabrication and measurement of a suspended nanochannel microbridge resonator monolithically integrated with CMOS readout circuitry. Micromachines. 2016;7:40. https://doi.org/10.3390/mi7030040.

    Article  Google Scholar 

  41. Feijó Delgado F, Cermak N, Hecht VC, et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE. 2013;8:e67590. https://doi.org/10.1371/journal.pone.0067590.

    Article  Google Scholar 

  42. Weng Y, Delgado FF, Son S, et al. Mass sensors with mechanical traps for weighing single cells in different fluids. Lab Chip. 2011;11:4174–80. https://doi.org/10.1039/c1lc20736a.

    Article  Google Scholar 

  43. Yang T, Bragheri F, Nava G, et al. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells. Sci Rep. 2016;6:23946. https://doi.org/10.1038/srep23946.

    Article  Google Scholar 

  44. Godin M, Delgado FF, Son S, et al. Using buoyant mass to measure the growth of single cells. Nat Methods. 2010;7:387–90. https://doi.org/10.1038/nmeth.1452.

    Article  Google Scholar 

  45. Cermak N, Olcum S, Delgado FF, et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol. 2016;34:1052–9. https://doi.org/10.1038/nbt.3666.

    Article  Google Scholar 

  46. Calistri NL, Kimmerling RJ, Malinowski SW, et al. Microfluidic active loading of single cells enables analysis of complex clinical specimens. Nat Commun. 2018;9:4784. https://doi.org/10.1038/s41467-018-07283-x.

    Article  Google Scholar 

  47. Stockslager MA, Olcum S, Knudsen SM, et al. Rapid and high-precision sizing of single particles using parallel suspended microchannel resonator arrays and deconvolution. Rev Sci Instrum. 2019;90:085004. https://doi.org/10.1063/1.5100861.

    Article  Google Scholar 

  48. Son S, Grover WH, Burg TP, Manalis SR. Suspended microchannel resonators for ultralow volume universal detection. Anal Chem. 2008;80:4757-60. https://doi.org/10.1021/ac800307a

  49. Jiang K, Khan F, Thomas J, et al. Thermomechanical responses of microfluidic cantilever capture DNA melting and properties of DNA premelting states using picoliters of DNA solution. Appl Phys Lett. 2019;114:173703. https://doi.org/10.1063/1.5092333.

    Article  Google Scholar 

  50. Burg TP, Godin M, Knudsen SM, et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 2007;446:1066–9. https://doi.org/10.1038/nature05741.

    Article  Google Scholar 

  51. Wang Y, Modena MM, Platen M, et al. Label-free measurement of amyloid elongation by suspended microchannel resonators. Anal Chem. 2015;87:1821–8. https://doi.org/10.1021/ac503845f.

    Article  Google Scholar 

  52. Knudsen SM, von Muhlen MG, Manalis SR. Quantifying particle coatings using high-precision mass measurements. Anal Chem. 2012;84:1240–2. https://doi.org/10.1021/ac300034r.

    Article  Google Scholar 

  53. Saha P, Duanis-Assaf T, Reches M. Fundamentals and applications of FluidFM technology in single-cell studies. Adv Mater Interfaces. 2020;7:1–14. https://doi.org/10.1002/admi.202001115.

    Article  Google Scholar 

  54. Ahmad IL, Ahmad MR. Trends in characterizing single cell’s stiffness properties. Micro Nano Syst Lett. 2014;2:8. https://doi.org/10.1186/s40486-014-0008-5.

    Article  Google Scholar 

  55. Zhou EH, Xu F, Quek ST, Lim CT. A power-law rheology-based finite element model for single cell deformation. Biomech Model Mechanobiol. 2012;11:1075–84. https://doi.org/10.1007/s10237-012-0374-y.

    Article  Google Scholar 

  56. Shaw Bagnall J, Byun S, Miyamoto DT, et al. Deformability-based cell selection with downstream immunofluorescence analysis. Integr Biol (United Kingdom). 2016;8:654–64. https://doi.org/10.1039/c5ib00284b.

    Article  Google Scholar 

  57. Byun S, Hecht VC, Manalis SR. Characterizing cellular biophysical responses to stress by relating density, deformability, and size. Biophys J. 2015;109:1565–73. https://doi.org/10.1016/j.bpj.2015.08.038.

    Article  Google Scholar 

  58. Byun S, Son S, Amodei D, et al. Characterizing deformability and surface friction of cancer cells. Proc Natl Acad Sci. 2013;110:7580–5. https://doi.org/10.1073/pnas.1218806110.

    Article  Google Scholar 

  59. Kang JH, Miettinen TP, Chen L, et al. Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat Methods. 2019;16:263–9. https://doi.org/10.1038/s41592-019-0326-x.

    Article  Google Scholar 

  60. Son S, Tzur A, Weng Y, et al. Direct observation of mammalian cell growth and size regulation. Nat Methods. 2012;9:910–2. https://doi.org/10.1038/nmeth.2133.

    Article  Google Scholar 

  61. Verbridge SS, Edel JB, Stavis SM, et al. Suspended glass nanochannels coupled with microstructures for single molecule detection. J Appl Phys. 2005;97:124317. https://doi.org/10.1063/1.1924888.

    Article  Google Scholar 

  62. Park J, Karsten SL, Nishida S, et al. Application of a new microcantilever biosensor resonating at the air–liquid interface for direct insulin detection and continuous monitoring of enzymatic reactions. Lab Chip. 2012;12:4115. https://doi.org/10.1039/c2lc40232g.

    Article  Google Scholar 

  63. Martín-Pérez A, Ramos D, Yubero ML, et al. Hydrodynamic assisted multiparametric particle spectrometry. Sci Rep. 2021;11:3535. https://doi.org/10.1038/s41598-021-82708-0.

    Article  Google Scholar 

  64. Bryan AK, Goranov A, Amon A, Manalis SR. Measurement of mass, density, and volume during the cell cycle of yeast. Proc Natl Acad Sci. 2010;107:999–1004. https://doi.org/10.4132/KoreanJPathol.2012.46.4.341.

    Article  Google Scholar 

  65. Bryan AK, Hecht VC, Shen W, et al. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab Chip. 2014;14:569–76. https://doi.org/10.1039/C3LC51022K.

    Article  Google Scholar 

  66. Kimmerling RJ, Prakadan SM, Gupta AJ, et al. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol. 2018;19:207. https://doi.org/10.1186/s13059-018-1576-0.

    Article  Google Scholar 

  67. Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363–9. https://doi.org/10.1038/nature13437.

    Article  Google Scholar 

  68. Kimmerling RJ, Lee Szeto G, Li JW, et al. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun. 2016;7:10220. https://doi.org/10.1038/ncomms10220.

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (Ministry of Science and ICT) (NRF-2020R1A2C300488512 and NRF-2020R1A4A200272812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungchul Lee.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have consented to the submission of their work to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Jeong, J., Son, S. et al. Cellular and biomolecular detection based on suspended microchannel resonators. Biomed. Eng. Lett. 11, 367–382 (2021). https://doi.org/10.1007/s13534-021-00207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00207-7

Keywords

Navigation