Skip to main content
Log in

Recent advances in hybrid system of porous silicon nanoparticles and biocompatible polymers for biomedical applications

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Hybrid systems of nanoparticles and polymers have emerged as a new material in the biomedical field. To date, various kinds of hybrid systems have been introduced and applied to drug delivery, regenerative medicine, therapeutics, disease diagnosis, and medical implantation. Among them, the hybridization of nanostructured porous silicon nanoparticles (pSiNPs) and biocompatible polymers has been highlighted due to its unique biological and physicochemical properties. This review focuses on the recent advances in the hybrid systems of pSiNPs and biocompatible polymers from an engineering aspect and its biomedical applications. Representative hybrid formulations, (i) Polymer-coated pSiNPs, (ii) pSiNPs-embedded polymeric nanofibers, are outlined along with their preparation methods, biomedical applications, and future perspectives. We believe this review provides insight into a new hybrid system of pSiNPs and biocompatible polymers as a promising nano-platform for further biomedical applications.

Graphic abstract

Recently developed and representative hybrid systems of porous silicon nanoparticles and biocompatible polymers and their biomedical applications are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Segal E, Krepker M, Polymer-porous silicon composites. In: Handbook of porous silicon. Springer International Publishing Switzerland; 2014: 187–198.

  2. Bonanno LM, Segal E. Nanostructured porous silicon–polymer-based hybrids: from biosensing to drug delivery. Nanomedicine. 2011;6(10):1755–70.

    Article  Google Scholar 

  3. de Moraes Porto ICC. Polymer biocompatibility. Polymerization Croatia. INTECH. 2012;2012:47–63.

    Google Scholar 

  4. Soares DCF, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695.

    Article  Google Scholar 

  5. Zhang D-X, Esser L, Vasani RB, Thissen H, Voelcker NH. Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine. 2019;14(24):3213–30.

    Article  Google Scholar 

  6. Canham L. Handbook of porous silicon. Berlin: Springer; 2014.

    Book  Google Scholar 

  7. Sailor MJ. Porous silicon in practice: preparation, characterization and applications. Hoboken: John Wiley & Sons; 2012.

    Google Scholar 

  8. Harraz FA. Porous silicon chemical sensors and biosensors: a review. Sens Actuator B-Chem. 2014;202:897–912.

    Article  Google Scholar 

  9. Santos HA, Hirvonen J. Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine. 2012;7(9):1281–4.

    Article  Google Scholar 

  10. Park J-H, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331–6.

    Article  Google Scholar 

  11. Tieu T, Alba M, Elnathan R, Cifuentes-Rius A, Voelcker NH. Advances in porous silicon–based nanomaterials for diagnostic and therapeutic applications. Adv Ther. 2019;2(1):1800095.

    Article  Google Scholar 

  12. Salonen J, Lehto V-P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J. 2008;137(1):162–72.

    Article  Google Scholar 

  13. Santos HA, Mäkilä E, Airaksinen AJ, Bimbo LM, Hirvonen J. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine. 2014;9(4):535–54.

    Article  Google Scholar 

  14. Lee SH, Kang JS, Kim D. A mini review: recent advances in surface modification of porous silicon. Materials. 2018;11(12):2557.

    Article  Google Scholar 

  15. Jung Y, Huh Y, Kim D. Recent advances in surface engineering of porous silicon nanomaterials for biomedical applications. Microporous Mesoporous Mater. 2021;310:110673

    Article  Google Scholar 

  16. Kang RH, Lee SH, Kang S, Kang J, Hur JK, Kim D. Systematic degradation rate analysis of surface-functionalized porous silicon nanoparticles. Materials. 2019;12(4):580.

    Article  Google Scholar 

  17. Bertucci A, Kim K-H, Kang J, Zuidema JM, Lee SH, Kwon EJ, Kim D, Howell SB, Ricci F, Ruoslahti E. Tumor-targeting, microRNA-silencing porous silicon nanoparticles for ovarian cancer therapy. ACS Appl Mater Interfaces. 2019;11(27):23926–37.

    Article  Google Scholar 

  18. Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring porous silicon for biomedical applications: from drug delivery to cancer immunotherapy. Adv Mater. 2018;30(24):1703740.

    Article  Google Scholar 

  19. Kang RH, Jang J-E, Huh E, Kang SJ, Ahn D-R, Kang JS, Sailor MJ, Yeo SG, Oh MS, Kim D. A brain tumor-homing tetra-peptide delivers a nano-therapeutic for more effective treatment of a mouse model of glioblastoma. Nanoscale Horiz. 2020;5(8):1213–25.

    Article  Google Scholar 

  20. Luu Y, Kim K, Hsiao B, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release. 2003;89(2):341–53.

    Article  Google Scholar 

  21. Burnham MR, Turner JN, Szarowski D, Martin DL. Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials. 2006;27(35):5883–91.

    Article  Google Scholar 

  22. Massad-Ivanir N, Friedman T, Nahor A, Eichler S, Bonanno LM, Sa’ar A, Segal EJSM. Hydrogels synthesized in electrochemically machined porous Si hosts: effect of nano-scale confinement on polymer properties. Soft Matter. 2012;8(35):9166–76.

    Article  Google Scholar 

  23. Krepker MA, Segal E. Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds. Anal Chem. 2013;85(15):7353–60.

    Article  Google Scholar 

  24. Robbiano V, Paternò GM, La Mattina AA, Motti SG, Lanzani G, Scotognella F, Barillaro G. Room-temperature low-threshold lasing from monolithically integrated nanostructured porous silicon hybrid microcavities. ACS Nano. 2018;12(5):4536–44.

    Article  Google Scholar 

  25. Kumeria T, Wang J, Chan N, Harris TJ, Sailor MJ. Visual sensor for sterilization of polymer fixtures using embedded mesoporous silicon photonic crystals. ACS Sens. 2018;3(1):143–50.

    Article  Google Scholar 

  26. Wu J, Sailor MJ. Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater. 2009;19(5):733–41.

    Article  Google Scholar 

  27. Vasani RB, Szili EJ, Rajeev G, Voelcker NH. On-demand antimicrobial treatment with antibiotic-loaded porous silicon capped with a pH-responsive dual plasma polymer barrier. Chem Asian J. 2017;12(13):1605–14.

    Article  Google Scholar 

  28. Tong WY, Alnakhli M, Bhardwaj R, Apostolou S, Sinha S, Fraser C, Kuchel T, Kuss B, Voelcker NH. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnol. 2018;16(1):38.

    Article  Google Scholar 

  29. Zhang D-X, Yoshikawa C, Welch NG, Pasic P, Thissen H, Voelcker NH. Spatially controlled surface modification of porous silicon for sustained drug delivery applications. Sci Rep. 2019;9(1):1367.

    Article  Google Scholar 

  30. Zuidema JM, Kumeria T, Kim D, Kang J, Wang J, Hollett G, Zhang X, Roberts DS, Chan N, Dowling CJAM. Oriented nanofibrous polymer scaffolds containing protein-loaded porous silicon generated by spray nebulization. Adv Mater. 2018;30(12):1706785.

    Article  Google Scholar 

  31. Xia B, Zhang W, Shi J, Li J, Chen Z, Zhang Q. NIR light-triggered gelling in situ of porous silicon nanoparticles/PEGDA hybrid hydrogels for localized combinatorial therapy of cancer cells. J Appl Polym Sci. 2019;136(17):47443.

    Article  Google Scholar 

  32. Zuidema JM, Dumont CM, Wang J, Batchelor WM, Lu YS, Kang J, Bertucci A, Ziebarth NM, Shea LD, Sailor MJ. Porous silicon nanoparticles embedded in poly (lactic-co-glycolic acid) nanofiber scaffolds deliver neurotrophic payloads to enhance neuronal growth. Adv Funct Mater. 2020;30(25):2002560.

    Article  Google Scholar 

  33. Zuidema JM, Bertucci A, Kang J, Sailor MJ, Ricci FJN. Hybrid polymer/porous silicon nanofibers for loading and sustained release of synthetic DNA-based responsive devices. Nanoscale. 2020;12(4):2333–9.

    Article  Google Scholar 

  34. Gongalsky MB, Kharin AY, Osminkina LA, Timoshenko VY, Jeong J, Lee H, Chung BH. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Res Lett. 2012;7(1):446.

    Article  Google Scholar 

  35. Xu W, Thapa R, Liu D, Nissinen T, Granroth S, Närvänen A, Suvanto M, Santos HA, Lehto VP. Smart porous silicon nanoparticles with polymeric coatings for sequential combination therapy. Mol Pharm. 2015;12(11):4038–47.

    Article  Google Scholar 

  36. Tamarov K, Xu W, Osminkina L, Zinovyev S, Soininen P, Kudryavtsev A, Gongalsky M, Gaydarova A, Närvänen A, Timoshenko V. Temperature responsive porous silicon nanoparticles for cancer therapy–spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. J Controll Release. 2016;241:220–8.

    Article  Google Scholar 

  37. Kumeria T, Wang J, Kim B, Park J-H, Zuidema JM, Klempner M, Cavacini L, Wang Y, Sailor MJJABS. Engineering: enteric polymer-coated porous silicon nanoparticles for site-specific oral delivery of IgA antibody. ACS Biomater. Sci. Eng. 2020; just accepted.

  38. DeLouise LA, Fauchet PM, Miller BL, Pentland AA. Hydrogel-supported optical-microcavity sensors. Adv Mater. 2005;17(18):2199–203.

    Article  Google Scholar 

  39. El-Zohary SE, Shenashen M, Allam NK, Okamoto T, Haraguchi MJJoN. Electrical characterization of nanopolyaniline/porous silicon heterojunction at high temperatures. J. Nanomater. 2013;2013: 568175.

  40. Shahbazi M-A, Almeida PV, Mäkilä EM, Kaasalainen MH, Salonen JJ, Hirvonen JT, Santos HAJB. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials. 2014;35(26):7488–500.

    Article  Google Scholar 

  41. Shahbazi MA, Almeida PV, Mäkilä E, Correia A, Ferreira MP, Kaasalainen M, Salonen J, Hirvonen J, Santos HA. Poly (methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromol Rapid Commun. 2014;35(6):624–9.

    Article  Google Scholar 

  42. Correia A, Shahbazi M-A, Mäkilä E, Almeida S, Salonen J, Hirvonen J, Santos HA. Cyclodextrin-modified porous silicon nanoparticles for efficient sustained drug delivery and proliferation inhibition of breast cancer cells. ACS Appl Mater Interfaces. 2015;7(41):23197–204.

    Article  Google Scholar 

  43. Liu D, Zhang H, Mäkilä E, Fan J, Herranz-Blanco B, Wang C-F, Rosa R, Ribeiro AJ, Salonen J, Hirvonen JJB. Microfluidic assisted one-step fabrication of porous silicon@ acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials. 2015;39:249–59.

    Article  Google Scholar 

  44. Schiattarella C, Moretta R, Defforge T, Gautier G, Della Ventura B, Terracciano M, Tortiglione C, Fardella F, Maddalena P, De Stefano L. Time-gated luminescence imaging of positively charged poly-l-lysine-coated highly microporous silicon nanoparticles in living Hydra polyp. J Biophotonics. 2020;13(12):e202000272.

    Article  Google Scholar 

  45. Mukherjee P, Whitehead MA, Senter RA, Fan D, Coffer JL, Canham LT. Biorelevant mesoporous silicon/polymer composites: directed assembly, disassembly, and controlled release. Biomed Microdevices. 2006;8(1):9–15.

    Article  Google Scholar 

  46. Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science. 2003;299(5615):2045–7.

    Article  Google Scholar 

  47. Park JS, Meade SO, Segal E, Sailor MJ. Porous silicon-based polymer replicas formed by bead patterning. Phys Status Solidi (a). 2007;204(5):1383–7.

    Article  Google Scholar 

  48. Li YY, Kollengode VS, Sailor MJ. Porous-silicon/polymer nanocomposite photonic crystals formed by microdroplet patterning. Adv Mater. 2005;17(10):1249–51.

    Article  Google Scholar 

  49. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S. Review of the recent developments in cellulose nanocomposite processing. Compo Part A Appl Sci Manuf. 2016;83:2–18.

    Article  Google Scholar 

  50. Wang S, Wang Z, Li J, Li L, Hu W. Surface-grafting polymers: from chemistry to organic electronics. Mater Chem Front. 2020;4(3):692–714.

    Article  Google Scholar 

  51. Valencia PM, Farokhzad OC, Karnik R, Langer RJN-EMA. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7:623-9.

  52. Zhang L, Chen Q, Ma Y, Sun J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater. 2019;3(1):107–20.

    Article  Google Scholar 

  53. Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: microfluidic approach. Chem Eng Res Des. 2020;153:728–56.

    Article  Google Scholar 

  54. RoyChaudhuri C. A review on porous silicon based electrochemical biosensors: beyond surface area enhancement factor. Sens Actuator B-Chem. 2015;210:310–23.

    Article  Google Scholar 

  55. Mahdavi Z, Rezvani H, Moraveji MK. Core–shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv. 2020;10(31):18280–95.

    Article  Google Scholar 

  56. Lei KF. Microfluidic systems for diagnostic applications: a review. J Lab Autom. 2012;17(5):330–47.

    Article  Google Scholar 

  57. Martins JP, Torrieri G, Santos HA. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv. 2018;15(5):469–79.

    Article  Google Scholar 

  58. Liu D, Zhang H, Herranz-Blanco B, Mäkilä E, Lehto VP, Salonen J, Hirvonen J, Santos HA. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery. Small. 2014;10(10):2029–38.

    Article  Google Scholar 

  59. Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA. Fabrication of a multifunctional Nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater. 2014;26(26):4497–503.

    Article  Google Scholar 

  60. Li W, Li Y, Liu Z, Kerdsakundee N, Zhang M, Zhang F, Liu X, Bauleth-Ramos T, Lian W, Mäkilä EJB. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials. 2018;185:322–32.

    Article  Google Scholar 

  61. Panthi G, Park M, Kim H-Y, Park S-J. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: a review. J Ind Eng Chem. 2015;24:1–13.

    Article  Google Scholar 

  62. Tutak W, Sarkar S, Lin-Gibson S, Farooque TM, Jyotsnendu G, Wang D, Kohn J, Bolikal D, Simon CG Jr. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 2013;34(10):2389–98.

    Article  Google Scholar 

  63. Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1–17.

    Article  Google Scholar 

  64. Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011;17(5):349–64.

    Article  Google Scholar 

  65. Ghafoor B, Aleem A, Ali MN, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Technol. 2018;48:82–7.

    Article  Google Scholar 

  66. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  Google Scholar 

  67. Daristotle JL, Behrens AM, Sandler AD, Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces. 2016;8(51):34951–63.

    Article  Google Scholar 

  68. Stojanovska E, Canbay E, Pampal ES, Calisir MD, Agma O, Polat Y, Simsek R, Gundogdu NS, Akgul Y, Kilic A. A review on non-electro nanofibre spinning techniques. RSC Adv. 2016;6(87):83783–801.

    Article  Google Scholar 

  69. Song J, Li Z, Wu H. Blowspinning: a new choice for nanofibers. ACS Appl Mater Interfaces. 2020;12(30):33447–64.

    Article  Google Scholar 

  70. Singh R, Ahmed F, Polley P, Giri J. Fabrication and characterization of core–shell nanofibers using a next-generation airbrush for biomedical applications. ACS Appl Mater Interfaces. 2018;10(49):41924–34.

    Article  Google Scholar 

  71. Tutak W, Gelven G, Markle C, Palmer XL. Rapid polymer fiber airbrushing: Impact of a device design on the fiber fabrication and matrix quality. J Appl Polym Sci. 2015;132(47):42813.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) of Korea funded by the Ministry of Science & ICT (NRF-2019-M3A9H1103783). This research was also supported by the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (NRF-2018-R1A6A1A03025124, NRF-2018-R1D1A1B07043383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dokyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and Jung Y declares that s/he has no conflict of interest in relation to the work in this article. Kim D declares that s/he has no conflict of interest in relation to the work in this article

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, Y., Kim, D. Recent advances in hybrid system of porous silicon nanoparticles and biocompatible polymers for biomedical applications. Biomed. Eng. Lett. 11, 171–181 (2021). https://doi.org/10.1007/s13534-021-00194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00194-9

Keywords

Navigation