Skip to main content
Log in

EEG classification of ADHD and normal children using non-linear features and neural network

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Attention-Deficit Hyperactivity Disorder (ADHD) is a neuro-developmental disorder that is characterized by hyperactivity, inattention and abrupt behaviors. This study proposes an approach for distinguishing ADHD children from normal children using their EEG signals when performing a cognitive task.

Methods

In this study, 30 children with ADHD and 30 age-matched healthy children without neurological disorders underwent electroencephalography (EEG) when performing a task to stimulate their attention. Fractal dimension (FD), approximate entropy and lyapunov exponent were extracted from EEG signals as non-linear features. In order to improve the classification results, double input symmetrical relevance (DISR) and minimum Redundancy Maximum Relevance (mRMR) methods were used to select the best features as inputs to multi-layer perceptron (MLP) neural network.

Results

As expected, children with ADHD had more delays and were less accurate in doing the cognitive task. Also, the extracted non-linear features revealed that non-linear indices were greater in different regions of the brain of ADHD children compared to healthy children. This could indicate a more chaotic behavior of ADHD children while performing a cognitive task. Finally, the accuracy of 92.28% and 93.65% were achieved using mRMR method and DISR method using MLP, respectively.

Conclusions

The results of this study demonstrate the ability of the non-linear features to distinguish ADHD children from healthy children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. 5th edn. American Psychiatric Association, Washington, D.C. 2013.

    Google Scholar 

  2. Meysamie A, Fard MD, Mohammadi M-R. Prevalence of attention-deficit/hyperactivity disorder symptoms in preschoolaged Iranian children. Iran J Pediatr. 2011; 21(4):467.

    Google Scholar 

  3. Jafari P, Ghanizadeh A, Akhondzadeh S, Mohammadi MR. Health-related quality of life of Iranian children with attention deficit/hyperactivity disorder. Qual Life Res. 2011; 20(1):31–6.

    Article  Google Scholar 

  4. King JA, Colla M, Brass M, Heuser I, von Cramon D. Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance. Behav Brain Funct. 2007; 3:42. doi: 10.1186/1744-9081-3-42.

    Article  Google Scholar 

  5. Aboitiz F, Ossandon T, Zamorano F, Palma B, Carrasco X. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks. Front Psychol. 2014: 4:183. doi: 10.3389/fpsyg.2014.00183.

    Google Scholar 

  6. Mohammadi MR, Malmir N, Khaleghi A. Comparison of sensorimotor rhythm (SMR) and beta training on selective attention and symptoms in children with attention deficit/hyperactivity disorder (ADHD): a trend report. Iran J Pediatr. 2015; 10(3):165–74.

    Google Scholar 

  7. Organization WH. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. WHO: Geneva; 1992.

    Google Scholar 

  8. Lubar JF. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self-Reg 1991; 16(3):201–25.

    Article  Google Scholar 

  9. Tansey MA. Brainwave signatures—an index reflective of the brain’s functional neuroanatomy: further findings on the effect of EEG sensorimotor rhythm biofeedback training on the neurologic precursors of learning disabilities. Int J Psychol. 1985; 3(2):85–99.

    Google Scholar 

  10. Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Muller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychol. 2014; 93(1):162–6. doi:10.1016/j.ijpsycho.2013.01.008.

    Google Scholar 

  11. Poil SS, Bollmann S, Ghisleni C, O’Gorman RL, Klaver P, Ball J, Eich-Hochli D, Brandeis D, Michels L. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin Neurophysiol. 2014; 125(8):1626–38. doi:10.1016/j.clinph.2013.12.118.

    Article  Google Scholar 

  12. Mazaheri A, Fassbender C, Coffey-Corina S, Hartanto TA, Schweitzer JB, Mangun GR. Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biol Psychiat. 2014; 76(5):422–9. doi:10.1016/j.biopsych.2013.08.023

    Article  Google Scholar 

  13. Fonseca LC, Tedrus GMA, Moraes Cd, Machado AdV, Almeida MPd, Oliveira DOFd. Epileptiform abnormalities and quantitative EEG in children with attention-deficit/hyperactivity disorder. Arq Neuro-Psiquiat. 2008; 66(3A):462–7.

    Article  Google Scholar 

  14. Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera G-M. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011; 5(1):5.

    Article  Google Scholar 

  15. Arns M, Gordon E. Quantitative EEG (QEEG) in psychiatry:Diagnostic or prognostic use? Clin Neurophysiol. 2014; 125(8):1504–6. doi:http://dx.doi.org/10.1016/j.clinph.2014.01.014.

    Article  Google Scholar 

  16. Lenartowicz A, Loo SK. Use of EEG to diagnose ADHD. Curr Psychiat Rep. 2014; 16(11):498. doi:10.1007/s11920-014-0498-0.

    Article  Google Scholar 

  17. Zarafshan H, Khaleghi A, Mohammadi MR, Moeini M, Malmir N. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task. J Clin Exper Neuropsychol. 2015; 1–9.

    Google Scholar 

  18. Khaleghi A, Sheikhani A, Mohammadi MR, Nasrabadi AM, Vand SR, Zarafshan H, Moeini M. EEG classification of adolescents with type I and type II of bipolar disorder. Australasian Phys Eng Sci Med. 2015; 38(4):551–9.

    Article  Google Scholar 

  19. Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaosneural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol. 2010; 27(5):328–33.

    Article  Google Scholar 

  20. Sadatnezhad K, Boostani R, Ghanizadeh A. Classification of BMD and ADHD patients using their EEG signals. Exp Syst Appl. 2011; 38(3):1956–63.

    Article  Google Scholar 

  21. Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D. 1988; 31(2):277–83.

    Article  MathSciNet  MATH  Google Scholar 

  22. Petrosian A, Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proc 8th Comp Med Sy. 1995; 212–7.

    Google Scholar 

  23. Stoica P, Moses RL. Introduction to spectral analysis, vol 1. Prentice hall Upper Saddle River, NJ. 1997.

    Google Scholar 

  24. Principe J, Lo P. Towards the determination of the largest Lyapunov exponent of EEG segments. In: Proceedings of the conference on measuring chaos in the human brain. World Scientific, Singapore, 1991. pp. 156–66.

    Google Scholar 

  25. Röschke J, Fell J, Beckmann P. The calculation of the first positive Lyapunov exponent in sleep EEG data. Electroencephalography Clin Neurophysiol. 1993; 86(5):348–52.

    Article  MATH  Google Scholar 

  26. Acharya UR, Vinitha Sree S, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowledge-Based Syst. 2013; 45:147–65.

    Article  Google Scholar 

  27. Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE T Pattern Anal. 2005; 27(8):1226–38.

    Article  Google Scholar 

  28. Brown G, Pocock A, Zhao M-J, Luján M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res. 2012; 13(1):27–66.

    MathSciNet  MATH  Google Scholar 

  29. Meyer PE, Bontempi G. On the use of variable complementarity for feature selection in cancer classification. In: Applications of Evolutionary Computing. Springer. 2006. pp. 91–102.

    Chapter  Google Scholar 

  30. Theodoridis S, Pikrakis A, Koutroumbas K, Cavouras D. Introduction to Pattern Recognition: A Matlab Approach: A Matlab Approach. Academic Press. 2010.

    Google Scholar 

  31. Nelles O. Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer. 2001.

    Book  MATH  Google Scholar 

  32. Liechti MD, Valko L, Muller UC, Dohnert M, Drechsler R, Steinhausen HC, Brandeis D. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. 2013; 26(1):135–51. doi:10.1007/s10548-012-0258-6.

    Article  Google Scholar 

  33. Alba-Sanchez F, Yanez-Suarez O, Brust-Carmona H. Assisted diagnosis of attention-deficit hyperactivity disorder through EEG bandpower clustering with self-organizing maps. Conf Proc IEEE Eng Med Biol Soc, 2010; 2010:2447–50.

    Google Scholar 

  34. Ghassemi F, Hassan Moradi M, Tehrani-Doost M, Abootalebi V. Using non-linear features of EEG for ADHD/normal participants’ classification. Proc Soc Behav Sci. 2012; 32:148–52.

    Article  Google Scholar 

  35. Ahmadlou M, Adeli H. Wavelet-synchronization methodology:a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010; 41(1):1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khaleghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M.R., Khaleghi, A., Nasrabadi, A.M. et al. EEG classification of ADHD and normal children using non-linear features and neural network. Biomed. Eng. Lett. 6, 66–73 (2016). https://doi.org/10.1007/s13534-016-0218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0218-2

Keywords

Navigation