Skip to main content
Log in

Toxicity and Toxin Composition of Microcystis aeruginosa from Wangsong Reservoir

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The increasing world population, resulting in increased anthropogenic water pollution, is negatively impacting the limited available water resources. In South Korea, this similarly affects the water quality of reservoirs. As water is a basic necessity for life, water quality monitoring is essential but typically does not include toxicity testing. However, as toxic bloom event frequencies are increasing, this previously neglected aspect becomes pertinent. Therefore, in the present study, the toxin composition and toxicity of a Microcystis aeruginosa strain isolated from a persistent bloom in lake Wangsong, South Korea, was investigated.

Methods

A combination of bioassays and chemical analysis was used for this purpose. The bioassay species included terrestrial and aquatic plants, an alga, a rotifer, a tubificid annelid, and crustaceans, representing various trophic levels.

Results

The strain was found to produce microcystin-LR, -RR, and YR, as well as β-N-methylamino-L-alanine. The bioassays indicated that the primary producers were less sensitive to the crude extract.

Conclusion

The presence or absence of a visible cyanobacterial bloom is also not an indication of the toxins that may be present in the afflicted waters, and thus does not predict exposure risk. Similarly, the presence and absence of toxins and mixtures thereof does not indicate the ecological effect. Therefore, it would be advantages to include toxicity testing into routine water testing regimes to better understand the impact of harmful algal blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scholz, S. N., Esterhuizen-Londt, M. & Pflugmacher, S. Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures. Environ. Toxicol. Chem. 99, 543–577 (2017).

    Article  CAS  Google Scholar 

  2. Park, S. B. Algal blooms hit South Korean rivers, https://doi.org/www.nature.com/news/algal-blooms-hit-southkorean-rivers-1.11221 (2012).

    Google Scholar 

  3. Park, H. D., Kim, B., Kim, E. & Okino, T. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environ. Toxicol. Water Qual. 13, 225–234 (1998).

    Article  CAS  Google Scholar 

  4. Joung, S.-H., Oh, H.-M., Ko, S.-R. & Ahn, C.-Y. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10, 188–193 (2011).

    Article  Google Scholar 

  5. Kim, B., Kim, H.-S., Park, H.-D., Choi, K. & Park, J.-G. Microcystin content of cyanobacterial cells in Korean reservoirs and their toxicity. Korean J. Limnol. 32, 288–294 (1999).

    Google Scholar 

  6. Srivastava, A., Ahn, C.-Y., Asthana, R. K., Lee, H.-G. & Oh, H.-M. Status, Alert System and Prediction of Cyanobacterial bloom in South Korea. Biomed. Res. Int. 2015, http://dx.doi.org/10.1155/2015/584696 (2015).

  7. Lee, Y. et al. Development of a water quality index model for lakes and reservoirs. Water Environ. 12, S19–S28 (2014).

    Google Scholar 

  8. Park, H.-K., Jheong, W.-H., Kwon, O.-S. & Ryu, J.-K. Seasonal succession of toxic cyanobacteria and microcystins concentration in Paldang Reservoir. Algae 15, 29–35 (2000).

    Google Scholar 

  9. Joung, S.-H. et al. Water quality and cyanobacterial anatoxina concentration in Daechung reservoir. Korean J. Limnol. 35, 257–265 (2002).

    Google Scholar 

  10. Cho, D.-H. et al. Characteristics of Water Quality in Wangsong Reservoir and Its Inflow Streams. J. Korean Soc. Water Wastewater 26, 201–208 (2012).

    Article  Google Scholar 

  11. Jung, S. et al. The effect of phosphorus removal from sewage on the plankton community in a hypertrophic reservoir. J. Ecol. Environ. 40, 1–9 (2016).

    Article  Google Scholar 

  12. Carmichael, W. W. A review. Cyanobacteria secondary metabolites-the cyanotoxins. J. Appl. Bacteriology 72, 445–459 (1992).

    Article  CAS  Google Scholar 

  13. Omidi, A., Esterhuizen-Londt, M. & Pflugmacher, S. Still challenging: the ecological function of the cyanobacterial toxin microcystin -What we know so far. Toxin Rev. 37, doi:10.1080/15569543.2017.1326059 (2018).

  14. Kim, S.-G. et al. Determination of Cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl. Environ. Microbiol. 72, 3252–3258 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Amé, M. et al. Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9, 66–73 (2010).

    Article  CAS  Google Scholar 

  16. Chen, J. & Xie, P. Microcystin accumulation in freshwater bivalves from lake Taihu, China, and the potential risk to human consumption. Environ. Toxicol. Chem. 26, 1066–1073 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Educ. Knowl. 4, 10 (2013).

    Google Scholar 

  18. El Ghazali, E. et al. Effects of the microcystin profile of a cyanobacetrial bloom on growth and toxin accumulation in common carp Cyprimus carpio larvae. J. Fish Biol. 76, 1415–1430 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. Herrera, N., Echeverri, L. & Ferrão-Filho, S. Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon 95, 38–45 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Li, X.-Y., Chung, I.-K., Kim, J.-I. & Lee, J.-A. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. Toxicon 44, 821–827 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Pflugmacher, S., Amé, M., Wiegand, C. & Steinberg, C. Cyanobacterial toxins and endotoxins their origin and their ecophysiological effects in aquatic organisms. Wasser Boden 53, 15–20 (1999).

    Google Scholar 

  22. Pflugmacher, S. et al. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (Cav.) Trin. Ex. Steud. Environ. Toxicol. Chem. 20, 846–852 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Pflugmacher, S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. 17, 407–413 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Babica, P., Bláha, L. & Marsalek, B. Exploring the natural role of microcystins - A review of effects on photoautotrophic organisms. J. Phycology 42, 9–20 (2006).

    Article  Google Scholar 

  25. Oh, H.-M., Lee, S. J., Kim, J.-H., Kim, H.-S. & Yoon, B.-D. Seasonal variation and indirect monitoring of microcystin concentration in Daechung Reservoir, Korea. Appl. Environ. Microbiol. 67, 1484–1489 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Törökné, A. K. et al. Water quality monitoring by Thamnotoxkit FTM including cyanobacterial blooms. Wat. Sci. Tech. 42, 381–385 (2000).

    Article  Google Scholar 

  27. DeMott, W. R., Zhang, Q.-X. & Carmichael, W. W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia Limnol. Oceanogr. 36, 1346–1357 (1991).

    CAS  Google Scholar 

  28. Kós, P., Gorzó, G., Surányi, G. & Borbély, G. Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.). Anal. Biochem. 225, 49–53 (1995).

    Article  PubMed  Google Scholar 

  29. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. Purification and properties of unicellular bluegreen algae (Order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Romero-Oliva, C., Contardo-Jara, V. & Pflugmacher, S. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 105, 62–73 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Ha, M. H., Contardo-Jara, V. & Pflugmacher, S. Uptake of the cyanobacterial neurotoxin, anatoxin-a, and alterations in oxidative stress in the submerged aquatic plant Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 101, 205–12 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Esterhuizen-Londt, M., Downing, S. & Downing, T. G. Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37, 133–138 (2011).

    Article  CAS  Google Scholar 

  33. Esterhuizen-Londt, M., Kühn, S. & Pflugmacher, S. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using HILIC liquid chromatography tandem mass spectrometry: Quantification demonstrated in four aquatic organisms. Environ. Toxicol. Chem. 34, 2878–2883 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. US EPA Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. Toxdat. Multimethod program (binomial, moving average and probit). 3.ed. Cincinnati: Environmental Monitoring and Support Laboratory, U. S. Environmental Protection Agency, EPA/600/4-85/013 (1985).

  35. ASTM Standard Guide for Acute Toxicity Test with the Rotifer Brachionus. Method E1440-91 Reapproved 1998 (1998).

    Google Scholar 

  36. Kyselková, I. & Maršálek, B. Using of Daphnia magna, Artemia salina and Tubifex tubifex for cyanobacterial microcystins detection. Biologia 55, 637–643 (2000).

    Google Scholar 

  37. Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submerged aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Pflugmacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esterhuizen-Londt, M., Baik, S., Kwon, KS. et al. Toxicity and Toxin Composition of Microcystis aeruginosa from Wangsong Reservoir. Toxicol. Environ. Health Sci. 10, 179–185 (2018). https://doi.org/10.1007/s13530-018-0362-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0362-4

Keywords

Navigation