Skip to main content
Log in

Daphnia in water quality biomonitoring - “omic” approaches

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Along with the global industrialization, the problem of pollution has spread, especially the water pollution. Pollutants in many types (chemical, physical, radio-active or pathogenic microbial substances) enter natural water bodies such as lakes, rivers, oceans and so on, degrading the quality of water that has the harmful effects on several aquatic species living in it. As a result, many attempts have been made to develop the monitoring techniques to improve the ability of detecting more pollutants in shorter time, and at lower concentrations. Biological monitoring, or biomonitoring is a valuable assessment tool that receiving increased use in water quality monitoring programs, in which biochemical, genetic, morphological, and physiological changes in indicator species have been noted as being related to particular environmental stressors. Daphnia, a freshwater crustacean, has been extensively used as a model organism for toxicity testing and its toxicological reactions to environmental pollutants have been being well characterized. Together with this, achievements in genetic technology bring an advanced tool for studying water biomonitoring using this invertebrate. In the present review, the ability of using Daphnia in aquatic toxicological monitoring depending on “omic” approaches has been discussed shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markert, B., Kayser, G., Korhammer, S. & Oehlmann, J. Distribution and effects of trace substances in soils, plants and animals. Tr. Met. Env. 4, 3–31 (2000).

    Article  CAS  Google Scholar 

  2. Pereira, J. L. et al. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18, 455–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ambasht, R. S. & Ambasht, N. K. in Modern Trends in Applied Aquatic Ecology (Springer Science & Business Media, 2003).

    Book  Google Scholar 

  4. Tsui, M. T. & Chu, L. Aquatic toxicity of glyphosatebased formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Meng, Q., Li, X., Feng, Q. & Cao, Z. in The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008 (ICBBE 2008). 4555–4558 (IEEE).

    Book  Google Scholar 

  6. Oertel, N. & Salánki, J. in Modern Trends in Applied Aquatic Ecology, 219-246 (Springer, Germany, 2003).

    Google Scholar 

  7. Zhou, Q., Zhang, J., Fu, J., Shi, J. & Jiang, G. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Ana. Chim. Acta. 606, 135–150 (2008).

    Article  CAS  Google Scholar 

  8. Weber, C. I. U.S. Environmental Protection Agency Office of Water. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms 5th Edn. (Diane Publishing Co., Washington, D.C., 2002).

    Google Scholar 

  9. Metcalfe, J. L. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environ. Pollut. 60, 101–139 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 39, 2621–2635 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Li, L., Zheng, B. & Liu, L. Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ. Sci. 2, 1510–1524 (2010).

    Article  Google Scholar 

  12. Reece, P. F. & Richardson, J. S. Biomonitoring with the reference condition approach for the detection of aquatic ecosystems at risk. Proc. Biology and Management of Species and Habitats At Risk, Kamloops, BC 15, 549–552 (1999).

    Google Scholar 

  13. Gerhardt, A. Bioindicator species and their use in biomonitoring. Environmental Monitoring I. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCOEolss Publishers, Oxford (2002).

    Google Scholar 

  14. Holt, E. A. & Miller, S. W. Bioindicators: using organisms to measure environmental impacts. Nature Education Knowledge 3, 8 (2011).

    Google Scholar 

  15. Chen, L. et al. Influences of Temperature, pH and Turbidity on the Behavioral Responses of Daphnia magna and Japanese Medaka (Oryzias latipes) in the Biomonitor. Procedia Environ. Sci. 13, 80–86 (2012).

    Article  CAS  Google Scholar 

  16. Neves, M. et al. Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of a herbicide (Primextra® Gold TZ) and its active ingredient (S-metolachlor). Ecol. Indic. 53, 220–230 (2015).

    Article  CAS  Google Scholar 

  17. Shaw, J. R. et al. Daphnia as an emerging model for toxicological genomics. Adv. Exp. Biol. 2, 165–328 (2008).

    Article  CAS  Google Scholar 

  18. Hanazato, T. & Dodson, S. I. Synergistic effects of low oxygen concentration, predator kairomone, and a pesticide on the cladoceran Daphnia pulex. Limnol. Oceanogr. 40, 700–709 (1995).

    Article  CAS  Google Scholar 

  19. Witschi, H. & Last, J. in Casarett and Doull’s Toxicology: The Basic Science of Poisons, 5th Edn. (eds Klaassen, C. D., Amdur, M. O. & Doull, J.) 443–462 (Health Professions Division, McGraw-Hill, New-York, 1996).

  20. Flaherty, C. M. & Dodson, S. I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61, 200–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Heckmann, L.-H. et al. Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics. Toxicol. Lett. 172, 137–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Haap, T. & Köhler, H.-R. Cadmium tolerance in seven Daphnia magna clones is associated with reduced hsp70 baseline levels and induction. Aquat. Toxicol. 94, 131–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Koivisto, S., Ketola, M. & Walls, M. Comparison of five cladoceran species in short-and long-term copper exposure. Hydrobiologia 248, 125–136 (1992).

    Article  CAS  Google Scholar 

  24. Shaw, J. R., Dempsey, T. D., Chen, C. Y., Hamilton, J. W. & Folt, C. L. Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environ. Toxicol. Chem. 25, 182–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dworschak, P. C., Felder, D. L. & Tudge, C. C. in Treatise on Zoology-Anatomy, Taxonomy, Biology (eds Schram, F.R. & von Vaupel Klein, J.C.) 109-219 (BRILL, U.S.A, 2012).

  26. Grimaldi, D. & Engel, M. S. in Evolution of the Insects (Cambridge University Press, 2005).

    Google Scholar 

  27. Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia, http://www.ncbi.nlm.nih.gov/ corehtml/pmc/homepages/bookshelf/pdf/daph_screen US.pdf (2005).

    Google Scholar 

  28. Decaestecker, E., De Meester, L. & Mergeay, J. in Lost Sex (eds Schön, I., Martens, K. & van Dijk, P.) 295–316 (Springer Netherlands, Netherlands, 2009).

  29. Hairston, N. et al. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55, 2203–2214 (2001).

    Article  PubMed  Google Scholar 

  30. Auld, S. K., Scholefield, J. A. & Little, T. J. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite. Proc. R. Soc. A 277, 3291–3297 (2010).

    Article  Google Scholar 

  31. Le, T. H. et al. Toxicity evaluation of verapamil and tramadol based on toxicity assay and expression patterns of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna. Environ. Toxicol. 26, 515–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Snape, J. R., Maund, S. J., Pickford, D. B. & Hutchinson, T. H. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67, 143–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Klaper, R. & Thomas, M. A. At the crossroads of genomics and ecology: the promise of a canary on a chip. Bioscience 54, 403–412 (2004).

    Article  Google Scholar 

  34. Amin, R. P. et al. Genomic interrogation of mechanism (s) underlying cellular responses to toxicants. Toxicology 181, 555–563 (2002).

    Article  PubMed  Google Scholar 

  35. Heinloth, A. N. et al. Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol. Sci. 80, 193–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Merrick, B. & Bruno, M. Genomic and proteomic profiling for biomarkers and signature profiles of toxicity. Curr. Opin. Mol. Ther. 6, 600–607 (2004).

    CAS  PubMed  Google Scholar 

  37. Le, T.-H. et al. Proteomic analysis in Daphnia magna exposed to As (III), As (V) and Cd heavy metals and their binary mixtures for screening potential biomarkers. Chemosphere 93, 2341–2348 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Bartosiewicz, M. J. et al. Unique gene expression patterns in liver and kidney associated with exposure to chemical toxicants. J. Pharmacol. Exp. Ther. 297, 895–905 (2001).

    CAS  PubMed  Google Scholar 

  39. Watanabe, H. et al. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ. Toxicol. Chem. 26, 669–676 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boucher, P., Ditlecadet, D., Dubé, C. & Dufresne, F. Unusual duplication of the insulin-like receptor in the crustacean Daphnia pulex. BMC Evol. Biol. 10, 305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sung, W. et al. Simple sequence repeat variation in the Daphnia pulex genome. BMC genomics 11, 691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Routtu, J. et al. The first-generation Daphnia magna linkage map. BMC genomics 11, 508 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Reyero, N. et al. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents. Environ. Sci. Technol. 43, 4188–4193 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, J. et al. Determination of mRNA expression of DMRT93B, vitellogenin, and cuticle 12 in Daphnia magna and their biomarker potential for endocrine disruption. Ecotoxicology 20, 1741–1748 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Vioque-Fernández, A., de Almeida, E. A. & López-Barea, J. Assessment of Doñana National Park contamination in Procambarus clarkii: integration of conventional biomarkers and proteomic approaches. Sci. Total Environ. 407, 1784–1797 (2009).

    Article  PubMed  Google Scholar 

  47. Robinson, C. D. et al. Viral transgenesis of embryonic cell cultures from the freshwater microcrustacean Daphnia. J. Exp. Zool. Part A Comp. Exp. Bio. 305, 62–67 (2006).

    Article  Google Scholar 

  48. Kato, Y., Kobayashi, K., Watanabe, H. & Iguchi, T. Introduction of foreign DNA into the water flea, Daphnia magna, by electroporation. Ecotoxicology 19, 589–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kato, Y., Matsuura, T. & Watanabe, H. Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs. PLoS One 7, e45318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kato, Y. et al. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev. Genes Evol. 220, 337–345 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Ho Ko or Jiho Min.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, QA.V., Sekhon, S.S., Lee, L. et al. Daphnia in water quality biomonitoring - “omic” approaches. Toxicol. Environ. Health Sci. 8, 1–6 (2016). https://doi.org/10.1007/s13530-016-0255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0255-3

Keywords

Navigation