Skip to main content
Log in

Gene expression profiling of low dose exposure of saturated aliphatic aldehydes in A549 human alveolar epithelial cells

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Low-molecular weight saturated aliphatic aldehydes (LSAAs), which include propanal, butanal, pentanal, hexanal, octanal, nonanal and heptanal, are volatile organic compounds (VOCs). They are ubiquitous in the environment of our daily life. Although LSAAs are harmful, with mutagenic and carcinogenic effects, the mechanisms underlying the toxicity of volatile aldehydes are still unclear. Therefore, in this study, we performed genome-wide expression profile analysis of A549 human alveolar epithelial cells exposed to seven LSSAs. We selected genes whose expression was changed more than 1.5-fold in A549 cells exposed to LSAAs by analysis of gene expression profiles using human oligonucleotide chips. Through gene expression profiling, we showed that LSSAs are related to the key biological processes “defense response”, “inflammatory response” and “immune response” in gene ontology (GO) analysis. In addition, we identified two genes that were up-regulated (GREB1, BC009808) and four that were down-regulated (UCP1, TCP11, FNDC3A, LOC645206) by all the tested LSAAs. Our data suggest that LSAAs exert toxic effects on A549 cells by modulating mRNA expression. Moreover, we suggest that genes expressed in response to LSAAs represent a molecular signature that can be widely used, in combination with more traditional techniques, to assess and predict the toxicity caused by exposure to LSAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dassonville, C., Demattei, C. & Laurent, A. M. Assessment and predictor determination of indoor aldehyde levels in Paris newborn babies homes. Indoor Air 19, 314–323 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Baumann, M. G. D. et al. Aldehyde emissions from particleboard and medium density fiberboard products. Forest Products Journal 50, 75–81 (2000).

    CAS  Google Scholar 

  3. Nazaroff, W. W. & Weschler, C. J. Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos. Environ. 38, 2841–2865 (2004).

    Article  CAS  Google Scholar 

  4. Wolkoffa, P. et al. Risk in cleaning: chemical and physical exposure. Sci. Total Environ. 215, 135–156 (1998).

    Article  Google Scholar 

  5. Sarigiannis, D. A. et al. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ. Int. 37, 743–765 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Fullana, A., Carbonell-Barrachina, A. A. & Sidhu, S. Volatile aldehyde emissions from heated cooking oils. J. Sci. Food Agric. 84, 2015–2021 (2004).

    Article  CAS  Google Scholar 

  7. Kays, S. J., Hatch, J. & Yang, D. S. Volatile Floral Chemistry of Heliotropium arborescenes L. ‘Marin’. HortScience 40, 1237–1238 (2005).

    CAS  Google Scholar 

  8. Phillips, M. et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353, 1930–1933 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Corradi, M. et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167, 1380–1386 (2003).

    Article  PubMed  Google Scholar 

  10. Fuchs, P. et al. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 126, 2663–2670 (2010).

    PubMed  CAS  Google Scholar 

  11. Mazzone, P. J. Exhaled breath volatile organic compound biomarkers in lung cancer. J. Breath Res. 6, 027106 (2012).

    Article  PubMed  Google Scholar 

  12. Kato, S. et al. Formaldehyde in human cancer cells: detection by preconcentration-chemical ionization mass spectrometry. Anal. Chem. 73, 2992–2997 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. Guadagni, R. et al. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: urinary hexanal and heptanal as lung tumor biomarkers. Anal. Chim. Acta 701, 29–36 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Yazdanpanah, M. et al. Cytotoxic aldehydes as possible markers for childhood cancer. Free Radic. Biol. Med. 23, 870–878 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Park, S. J. State of the Art of the Deodorizing Technology in Korea. Available from: http://www.orea.or.jp/en/PDF/2004-06.pdf.

  16. Kohlpaintner, C., Schulte, M., Falbe, J., Lappe, P. & Weber, J. Aldehydes, Aliphatic and Araliphatic. Ullmann’s Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, Germany (1999).

    Google Scholar 

  17. Sanchez, B. C., Carter, B., Hammers, H. R. & Sepúlveda, M. S. Transcriptional response of hepatic largemouth bass (Micropterus salmoides) mRNA upon exposure to environmental contaminants. J. Appl. Toxicol. 31, 108–116 (2011).

    PubMed  CAS  Google Scholar 

  18. Kwon, J. Y., Kim, J. M., Ji, Y. H. & Seo, Y. R. Genome-wide microarray investigation of molecular targets and signaling networks in response to high-LET neutron in in vivo-mimic spheroid of human carcinoma. Mol. Cell. Toxicol. 8, 9–18 (2012).

    Article  CAS  Google Scholar 

  19. Song, M. K. et al. Gene Expression Analysis Identifies DNA Damage-related Markers of Benzo[a]pyrene Exposure in HepG2 Human Hepatocytes. Toxcol. Environ. Health. Sci. 4, 19–29 (2012).

    Article  Google Scholar 

  20. Song, J. W. et al. Environmental lung diseases: Clinical and imaging findings. Clin. Radiol. doi:pii: S0009-9260(12)00415-1. 10.1016/j.crad.2012.07.012 (2012).

  21. Berthier, A. et al. The novel antibacterial compound walrycin A induces human PXR transcriptional activity. Toxicol. Sci. 127, 225–235 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Fan, Y. et al. Long-term exposure to hexavalent chromium inhibits expression of tumor suppressor genes in cultured cells and in mice. J. Trace Elem. Med. Biol. 26, 188–191 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Fabbri, M. et al. Whole genome analysis and micro-RNAs regulation in HepG2 cells exposed to cadmium. ALTEX 29, 173–182 (2012).

    Google Scholar 

  24. Cho, Y. E. et al. In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integrative method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol. Cell Proteomics 11, M111. 010884 (2012).

    PubMed  Google Scholar 

  25. Huang, S. X. et al. Mitochondria-derived reactive intermediate species mediate asbestos-induced genotoxicity and oxidative stress-responsive signaling pathways. Environ. Health Perspect. 120, 840–847 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Black, M. B. et al. Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-pdioxin. Toxicol. Sci. 127, 199–215 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Bourdon, J. A. et al. Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol. Sci. 127, 474–484 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. Blanc, P. D. Emerging Occupational and Environmental Respiratory Diseases. Available from: http://www.chestnet.org/accp/pccsu/emerging-occupationaland-environmental-respiratory-diseases?page=0,3.

  29. Yao, H. et al. Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J. Biol. Chem. 285, 5405–5416 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Fink, B. D. & Reszka, K. J. Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria. Am. J. Physiol. Endocrinol. Metab. 288, E71–E79 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. He, Z. Y., Wen, H. & Shi, C. B. Up-regulation of hnRNP A1, Ezrin, tubulin β-2C and Annexin A1 in sentinel lymph nodes of colorectal cancer. World J. Gastroenterol. 16, 4670–4676 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Heo, J. D., Oh, J. H. & Lee, K. Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes. Arch. Toxicol. 84, 191–203 (2009).

    Article  Google Scholar 

  33. Zhang, L., Xiao, H. & Zhou, H. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell. Mol. Life Sci. 69, 3341–3350 (2012).

    Article  PubMed  CAS  Google Scholar 

  34. Xu, X. et al. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol. Sci. 124, 88–98 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. Nam, Y. H., Lee, S. K., Sammut, D., Davies, D. E. & Howarth, P. H. Preliminary study of the cellular characteristics of primary bronchial fibroblasts in patients with asthma: expression of alpha-smooth muscle actin, fibronectin containing extra type III domain A, and smoothelin. J. Investig. Allergol. Clin. Immunol. 22, 20–27 (2012).

    PubMed  CAS  Google Scholar 

  36. Zhang, L. et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol. Life Sci. 69, 3341–3350 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Parsanejad, R., Fields, W. R., Morgan, W. T., Bombick, B. R. & Doolittle, D. J. The time course of expression of genes involved in specific pathways in normal human bronchial epithelial cells following exposure to cigarette smoke. Exp. Lung Res. 34, 513–530 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.S., Yoon, JS., Song, M. et al. Gene expression profiling of low dose exposure of saturated aliphatic aldehydes in A549 human alveolar epithelial cells. Toxicol. Environ. Health Sci. 4, 211–217 (2012). https://doi.org/10.1007/s13530-012-0140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-012-0140-7

Keywords

Navigation