Skip to main content
Log in

Comparison of sulfur transferases in various tissue and mitochondria of rats with type 1 diabetes mellitus induced by streptozotocin

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

This study aims to investigate the relationship between sulfurtransferase (STS) activities [rhodanese (TST), mercaptopyruvate sulfurtransferase (MST)] involved in the catalysis of several biochemical reactions including detoxification of cyanide (CN), restructuring of Fe-S cluster in proteins, and detoxification of oxygen radicals. Rats with type 1 diabetes mellitus induced by streptozotocin (STZ) were anesthetized at 14th day, and liver, lung, kidney, and heart tissues were extracted. All samples were homogenized, and mitochondrial parts were separated. Same processes were performed also in the control group, and TST and MST activities were measured in each part. The homogenate MST (MST Homo .) activities of the type 1 diabetes mellitus group were compared with the control group, and a decrease was observed in the lung, liver, and kidney, respectively; at the same time, an increase was seen in the heart tissue. The mitochondrial MST (MST Mito .) activities of rats with type 1 diabetes mellitus group were compared with the control group, and a decrease was found in all tissues. The highest decrease in the TST Mito . level of rats with type 1 diabetes mellitus was observed in kidney tissue. The TST activities of the type 1 diabetes mellitus group were compared with the control group, and a decrease was observed in the liver, lung, and kidney, respectively; at the same time, an increase was seen in the heart tissue. It is demonstrated in the present study that decreases occur both in enzyme levels of tissue homogenates and in mitochondria, of rats with induced type 1 diabetes mellitus. However, these results were not statistically significant. In the presence of these findings, we think that kidney, liver, lung, and heart tissue can be affected by type 1 diabetes in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agboola FK, Okonji RE. Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) Liver. J Biochem Mol Biol. 2004;37:275–81.

    Article  CAS  PubMed  Google Scholar 

  2. Wasylewski Z, Basztura B, Koj A. Comparison of some physicochemical properties of rat and beef liver rhodanese. Bull Acad Pol Sci [Biol]. 1979;27:807–14.

    CAS  Google Scholar 

  3. Ogata K, Volini M. Mitochondrial rhodanese: membrane-bound and complexed activity. J Biol Chem. 1990;265:8087–93.

    CAS  PubMed  Google Scholar 

  4. Westley J. Thiosulfate: cyanide sulfurtransferase (rhodanese). Methods Enzymol. 1981;77:285–91.

    Article  CAS  PubMed  Google Scholar 

  5. Dooley TP, Nair SK, Garcia R, Courtney BC. Mouse rhodanese gene (Tst): cDNA cloning, sequencing, and recombinant protein expression. Biochem Biophys Res Commun. 1995;216:1101–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nagahara N, Okazaki T, Nishino T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem. 1995;270:16230–5.

    Article  CAS  PubMed  Google Scholar 

  7. Berni R, Cannella C, Monaco HL, Rossi GL. New crystalline derivatives of bovine liver rhodanese. Biochem Int. 1986;12:733–40.

    CAS  PubMed  Google Scholar 

  8. Colnaghi R, Pagani S, Kennedy C, Drummond M. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. Eur J Biochem. 1996;236:240–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, et al. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. J Mol Biol. 2000;298:691–704.

    Article  CAS  PubMed  Google Scholar 

  10. Aird BA, Heinrikson RL, Westley J. Isolation and characterization of a prokaryotic sulfurtransferase. J Biol Chem. 1987;262:17327–35.

    CAS  PubMed  Google Scholar 

  11. Lányi B. Rhodanese activity: a simple and reliable taxonomic tool for gram negative bacteria. J Med Microbiol. 1982;15(2):263–6.

    Article  PubMed  Google Scholar 

  12. Alexander K, Volini M. Properties of an Escherichia coli rhodanese. J Biol Chem. 1987;262:6595–604.

    CAS  PubMed  Google Scholar 

  13. Villarejo M, Westley J. Sulfur metabolism of Bacillus subtilis. Biochim Biophys Acta. 1966;117:209–16.

    Article  CAS  PubMed  Google Scholar 

  14. Laudenbach DE, Ehrhardt D, Green L, Grossmann A. Isolation and characterization of a sulfur-regulated gene encoding a periplasmatically localized protein with sequence similarity to rhodanese. J Bacteriol. 1991;173:2751–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vennesland B, Castric PA, Conn EE, Solomonson LP, Volini M, et al. Cyanide metabolism. Fed Proc. 1982;41:2639–48.

    CAS  PubMed  Google Scholar 

  16. Nagahara N, Ito T, Minami M. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Histol Histopathol. 1999;14:1277–86.

    CAS  PubMed  Google Scholar 

  17. Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39:335–47.

    Article  CAS  PubMed  Google Scholar 

  18. Wood JL, Fiedler H. β-mercaptopyruvate, a substrate for rhodanese. J Biol Chem. 1953;205:231–4.

    CAS  PubMed  Google Scholar 

  19. Westley J, Adler H, Westley L, Nishida C. The sulfurtransferases. Fundam Appl Toxicol. 1983;3:377–82.

    Article  CAS  PubMed  Google Scholar 

  20. Nagahara N, Nishino T. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and sitedirected mutagenesis. J Biol Chem. 1996;271:27395–401.

    Article  CAS  PubMed  Google Scholar 

  21. Westley JE. Ciba Foundation Symposium 140 - cyanide compounds in biology: mammalian cyanide detoxification with sulphane sulphur. Ciba Foundation;1988

  22. Nandi DL, Horowitz PM, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol. 2000;32:465–73.

    Article  CAS  PubMed  Google Scholar 

  23. Sabelli R, Iorio E, De Martino A, Podo F, Ricci A, Viticchiè G, et al. Rhodanese-thioredoxin system and allyl sulfur compounds. FEBS J. 2008;275:3884–99.

    Article  CAS  PubMed  Google Scholar 

  24. Bonomi F, Pagani S, Cerletti P, Cannella C. Rhodanese mediated sulfur transfer to succinate dehydrogenase. Eur J Bioche. 1977;72:17–24.

    Article  CAS  Google Scholar 

  25. Pagani S, Bonomi F, Cerletti P. Enzymic synthesis of the ironsulfur cluster of spinach ferredoxin. Eur J Biochem. 1984;142:361–6.

    Article  CAS  PubMed  Google Scholar 

  26. Pagani S, Eldridge M, Eady RR. Nitrogenase of Klebsiella pneumoniae: rhodanese-catalyzed restoration of activity of inactive 2Fe species of the Fe protein. Biochem J. 1987;244:485–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Max SR, Garbbus J, Wehmen HJ. Simple procedure for rapid isolation of functionally intact mitochondria from human and rat skeletal muscles. Anal Biochem. 1972;46:576–84.

    Article  CAS  PubMed  Google Scholar 

  28. Mousa HM, Davis RH. Alternative sulphur donors for detoxification of cyanide in the chicken. Comp Biochem Physiol C. 1991;99:309–15.

    Article  CAS  PubMed  Google Scholar 

  29. Tornqvist H, Belfrage P. Determination of protein in adipose tissue extracts. J Lipid Res. 1976;17:542–5.

    CAS  PubMed  Google Scholar 

  30. Pagani S, Galante YM. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Biochim Biophys Acta. 1983;742:278–84.

    Article  CAS  PubMed  Google Scholar 

  31. Matthies A, Rajagopalan KV, Mendel RR, Leimkühler S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci U S A. 2004;101:5946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leimkühler S, Rajagopalan KV. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem. 2001;276:22024–31.

    Article  PubMed  Google Scholar 

  33. Palenchar PM, Buck CJ, Cheng H, Larson TJ, Mueller EG. Evidence that thil, an enzyme shared between thiamine and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J Biol Chem. 2000;275:8283–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pauwels PJ, Opperdoes FR, Trouet A. Effect of oxygen and glucose availability on the glycolytic rate in neuroblastoma cells under different conditions of culture. Neurochem Int. 1984;64:467–73.

    Article  Google Scholar 

  35. Abdrakhmanova A, Dobrynin K, Zwicker K, Kerscher S, Brandt U. Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron–sulfur clusters. FEBS Lett. 2005;579:6781–5.

    Article  CAS  PubMed  Google Scholar 

  36. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. 2014;19:35–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Aydın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, H., Çelik, V.K., Sarı, İ. et al. Comparison of sulfur transferases in various tissue and mitochondria of rats with type 1 diabetes mellitus induced by streptozotocin. Int J Diabetes Dev Ctries 36, 4–9 (2016). https://doi.org/10.1007/s13410-015-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0377-1

Keywords

Navigation