Skip to main content

Advertisement

Log in

BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

BRCA1-associated protein (BRAP) was first identified by its ability to bind to the nuclear localization signalling motif of BRCA1 and other proteins. Subsequently, human BRAP has been found to exert multiple functions, many of which are related to cancer development. Up till now, however, the role of BRAP in glioma development has remained obscure. Here, we report a role for BRAP in mediating the proliferation and migration of glioma cells both in vitro and in vivo.

Methods

The expression of BRAP in 98 glioma patient samples was determined by immunohistochemistry, after which associations between BRAP expression and patient prognosis were assessed. A short hairpin RNA (shRNA) was used to knock down BRAP and an expression vector was used to exogenously overexpress BRAP in glioma cells. The effects of BRAP expression on tumour cell behaviour in vitro and in an in vivo xenograft mouse model were examined.

Results

We found that in glioma patients BRAP expression was associated with a favourable prognosis. We also found that shRNA-mediated knockdown of BRAP facilitated the proliferation and migration of glioma cells and the self-renewal of glioma stem cells. In parallel, we found that BRAP knockdown increased tumour growth and invasion and decreased survival in an in vivo glioma xenograft mouse model. Mechanistically, we found that BRAP inhibited glioma cell proliferation and migration, as well as glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway.

Conclusions

Together, our findings identify BRAP as a mediator of glioma cell proliferation, migration and glioma stem cell self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.A. McNeill, Epidemiology of brain tumors. Neurol Clin 34, 981–998 (2016)

    Article  Google Scholar 

  2. Q.T. Ostrom, H. Gittleman, L. Stetson, S. Virk, J.S. Barnholtz-Sloan, Epidemiology of intracranial Gliomas. Prog Neurol 30, 1–11 (2018)

  3. R. Stupp, M. Brada, M.J. van den Bent, J.C. Tonn, G. Pentheroudakis, High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3), iii93–ii101 (2014)

  4. D. Matias, J. Balca-Silva, L.G. Dubois, B. Pontes, V.P. Ferrer, L. Rosario, A. do Carmo, J. Echevarria-Lima, A.B. Sarmento-Ribeiro, M.C. Lopes, V. Moura-Neto, Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol 40, 247–261 (2017)

  5. J.I. Bastien, K.A. McNeill, H.A. Fine, Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Cancer 121, 502–516 (2015)

    Article  Google Scholar 

  6. S. Li, C.Y. Ku, A.A. Farmer, Y.S. Cong, C.F. Chen, W.H. Lee, Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem 273, 6183–6189 (1998)

    Article  CAS  Google Scholar 

  7. C. Chen, R.E. Lewis, M.A. White, IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem 283, 12789–12796 (2008)

    Article  CAS  Google Scholar 

  8. S.D. Hayes, H. Liu, E. MacDonald, C.M. Sanderson, J.M. Coulson, M.J. Clague, S. Urbe, Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem 287, 43007–43018 (2012)

    Article  CAS  Google Scholar 

  9. S.A. Matheny, C. Chen, R.L. Kortum, G.L. Razidlo, R.E. Lewis, M.A. White, Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427, 256–260 (2004)

    Article  CAS  Google Scholar 

  10. S.A. Matheny, M.A. White, Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1. Methods Enzymol 407, 237–247 (2006)

    Article  CAS  Google Scholar 

  11. S.A. Matheny, M.A. White, Signaling threshold regulation by the Ras effector IMP. J Biol Chem 284, 11007–11011 (2009)

    Article  CAS  Google Scholar 

  12. S. Shoji, K. Hanada, N. Ohsawa, M. Shirouzu, Central catalytic domain of BRAP (RNF52) recognizes the types of ubiquitin chains and utilizes oligoubiquitin for ubiquitylation. Biochem J 474, 3207–3226 (2017)

  13. J. Czyzyk, H.C. Chen, K. Bottomly, R.A. Flavell, p21 Ras/impedes mitogenic signal propagation regulates cytokine production and migration in CD4 T cells. J Biol Chem 283, 23004–23015 (2008)

    Article  CAS  Google Scholar 

  14. R.G. Davies, K.M. Wagstaff, E.A. McLaughlin, K.L. Loveland, D.A. Jans, The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins. Biochim Biophys Acta 1833, 3436–3444 (2013)

    Article  CAS  Google Scholar 

  15. M. Asada, K. Ohmi, D. Delia, S. Enosawa, S. Suzuki, A. Yuo, H. Suzuki, S. Mizutani, Brap2 functions as a cytoplasmic retention protein for p21 during monocyte differentiation. Mol Cell Biol 24, 8236–8243 (2004)

    Article  CAS  Google Scholar 

  16. A.J. Fulcher, D.M. Roth, S. Fatima, G. Alvisi, D.A. Jans, The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J 24, 1454–1466 (2010)

  17. K. Ozaki, H. Sato, K. Inoue, T. Tsunoda, Y. Sakata, H. Mizuno, T.H. Lin, Y. Miyamoto, A. Aoki, Y. Onouchi, S.H. Sheu, S. Ikegawa, K. Odashiro, M. Nobuyoshi, S.H. Juo, M. Hori, Y. Nakamura, T. Tanaka, SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat Genet 41, 329–333 (2009)

    Article  CAS  Google Scholar 

  18. L. Wu, B. Xi, D. Hou, X. Zhao, J. Liu, H. Cheng, Y. Shen, X. Wang, J. Mi, The single nucleotide polymorphisms in BRAP decrease the risk of metabolic syndrome in a Chinese young adult population. Diab Vasc Dis Res 10, 202–207 (2013)

    Article  CAS  Google Scholar 

  19. Y.C. Liao, Y.S. Wang, Y.C. Guo, K. Ozaki, T. Tanaka, H.F. Lin, M.H. Chang, K.C. Chen, M.L. Yu, S.H. Sheu, S.H. Juo, BRAP activates inflammatory cascades and increases the risk for carotid atherosclerosis. Mol Med 17, 1065–1074 (2011)

    Article  CAS  Google Scholar 

  20. F. Zhang, C. Liu, Y. Xu, G. Qi, G. Yuan, Z. Cheng, J. Wang, G. Wang, Z. Wang, W. Zhu, Z. Zhou, X. Zhao, L. Tian, C. Jin, J. Yuan, G. Zhang, Y. Chen, L. Wang, T. Lu, H. Yan, Y. Ruan, W. Yue, D. Zhang, A two-stage association study suggests BRAP as a susceptibility gene for schizophrenia. PLoS One 9, e86037 (2014)

    Article  Google Scholar 

  21. J.W. Kim, Y.M. Choe, J.G. Shin, B.L. Park, H.D. Shin, I.G. Choi, B.C. Lee, Associations of BRAP polymorphisms with the risk of alcohol dependence and scores on the alcohol use disorders identification test. Neuropsychiatr Dis Treat 15, 83–94 (2019)

    Article  CAS  Google Scholar 

  22. Y. Zhao, L. Wei, M. Shao, X. Huang, J. Chang, J. Zheng, J. Chu, Q. Cui, L. Peng, Y. Luo, W. Tan, W. Tan, D. Lin, C. Wu, BRCA1-Associated Protein Increases Invasiveness of Esophageal Squamous Cell Carcinoma. Gastroenterology 153, 1304–1319 e1305 (2017)

  23. J. Tang, S. Xi, G. Wang, B. Wang, S. Yan, Y. Wu, Y. Sang, W. Wu, R. Zhang, T. Kang, Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Med Oncol 30, 541 (2013)

    Article  Google Scholar 

  24. F.R. Schumacher, S.L. Schmit, S. Jiao, C.K. Edlund, H. Wang, B. Zhang, L. Hsu, S.C. Huang, C.P. Fischer, J.F. Harju, G.E. Idos, F. Lejbkowicz, F.J. Manion, K. McDonnell, C.E. McNeil, M. Melas, H.S. Rennert, W. Shi, D.C. Thomas, D.J. Van Den Berg, C.M. Hutter, A.K. Aragaki, K. Butterbach, B.J. Caan, C.S. Carlson, S.J. Chanock, K.R. Curtis, C.S. Fuchs, M. Gala, E.L. Giovannucc, S.M. Gogarten, R.B. Hayes, B. Henderson, D.J. Hunter, R.D. Jackson, L.N. Kolonel, C. Kooperberg, S. Kury, A. LaCroix, C.C. Laurie, C.A. Laurie, M. Lemire, D. Levine, J. Ma, K.W. Makar, C. Qu, D. Taverna, C.M. Ulrich, K. Wu, S. Kono, D.W. West, S.I. Berndt, S. Bezieau, H. Brenner, P.T. Campbell, A.T. Chan, J. Chang-Claude, G.A. Coetzee, D.V. Conti, D. Duggan, J.C. Figueiredo, B.K. Fortini, S.J. Gallinger, W.J. Gauderman, G. Giles, R. Green, R. Haile, T.A. Harrison, M. Hoffmeister, J.L. Hopper, T.J. Hudson, E. Jacobs, M. Iwasaki, S.H. Jee, M. Jenkins, W.H. Jia, A. Joshi, L. Li, N.M. Lindor, K. Matsuo, V. Moreno, B. Mukherjee, P.A. Newcomb, J.D. Potter, L. Raskin, G. Rennert, S. Rosse, G. Severi, R.E. Schoen, D. Seminara, X.O. Shu, M.L. Slattery, S. Tsugane, E. White, Y.B. Xiang, B.W. Zanke, W. Zheng, L. Le Marchand, G. Casey, S.B. Gruber, U. Peters, Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun 6, 7138 (2015)

    Article  Google Scholar 

  25. R.J. Gilbertson, J.N. Rich, Making a tumour's bed: Glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7, 733–736 (2007)

    Article  CAS  Google Scholar 

  26. J. Marjanovic Vicentic, D. Drakulic, I. Garcia, V. Vukovic, P. Aldaz, N. Puskas, I. Nikolic, G. Tasic, S. Raicevic, L. Garros-Regulez, N. Sampron, M.J. Atkinson, N. Anastasov, A. Matheu, M. Stevanovic, SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol 42, 41–54 (2019)

    Article  CAS  Google Scholar 

  27. L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol 40, 471–482 (2017)

    Article  CAS  Google Scholar 

  28. C.D. Stiles, D.H. Rowitch, Glioma stem cells: a midterm exam. Neuron 58, 832–846 (2008)

    Article  CAS  Google Scholar 

  29. I. Pastushenko, C. Blanpain, EMT transition states during tumor progression and metastasis. Trends Cell Biol 29, 212–226 (2019)

    Article  CAS  Google Scholar 

  30. T. Brabletz, R. Kalluri, M.A. Nieto, R.A. Weinberg, EMT in cancer. Nat Rev Cancer 18, 128–134 (2018)

    Article  CAS  Google Scholar 

  31. L. Zhang, F. Zhou, P. ten Dijke, Signaling interplay between transforming growth factor-beta receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci 38, 612–620 (2013)

    Article  Google Scholar 

  32. D.A. Fruman, C. Rommel, PI3K and cancer: Lessons, challenges and opportunities. Nat Rev Drug Discov 13, 140–156 (2014)

    Article  CAS  Google Scholar 

  33. R. Grant, L. Kolb, J. Moliterno, Molecular and genetic pathways in gliomas: The future of personalized therapeutics. CNS Oncology 3, 123–136 (2014)

    Article  CAS  Google Scholar 

  34. B. Markman, F. Atzori, J. Perez-Garcia, J. Tabernero, J. Baselga, Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 21, 683–691 (2010)

  35. J. Polivka Jr., F. Janku, Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142, 164–175 (2014)

    Article  CAS  Google Scholar 

  36. L.M. Thorpe, H. Yuzugullu, J.J. Zhao, PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15, 7–24 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by an Open Project of the State Key Laboratory of Medicinal Chemical Biology, Nankai University [grant number 2018048], Fundamental Research Funds for the Central Universities, Nankai University [grant number 63191106], the Chinese National Natural Science Foundation [grant number 81671380, 81902477], Key Project of Tianjin National Natural Science Foundation [grant number 17JCZDJC35900], the Science and Technology Development Foundation of Henan Province [172102310103], Henan Provincial Medical Science and Technology Project [grant number 2018020480] and the Chinese National Natural Science Foundation [grant number 81573737].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Zhuang, Dong Wang or Budong Chen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval and consent to participate

All subjects provided written informed consent before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of Tianjin Huanhu Hospital (NO.2019–14). All human tissue samples were obtained with patient consent. Animal experiments were performed according to the Health guidelines of the Tianjin Huanhu Hospital Animal Use and Care Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(TIF 120 kb)

ESM 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Cao, C., Liu, X. et al. BRCA1-associated protein inhibits glioma cell proliferation and migration and glioma stem cell self-renewal via the TGF-β/PI3K/AKT/mTOR signalling pathway. Cell Oncol. 43, 223–235 (2020). https://doi.org/10.1007/s13402-019-00482-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00482-8

Keywords

Navigation