Skip to main content

Advertisement

Log in

TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previously, we reported that quinacrine (QC) may cause apoptosis in breast and colon cancer cells by activating the death receptor 5 (DR5), resulting in autophagic cell death through p21 modulation. Here, we systematically evaluated the combined role of p21 and DR5 and their crosstalk in QC-mediated autophagy and apoptosis in breast cancer cells using in vitro and in vivo models.

Methods

Multiple breast cancer-derived cell lines (MCF-7, ZR-75-1, T47D, MDA-MB-231 and MCF-10A-Tr) and a mouse xenograft model were used. Also, multiple assays, including Western blotting, immunoprecipitation, staining for autophagy and apoptosis, gene silencing, hematoxylin and eosin staining, immunohistochemistry, cell viability assessment, fluorescence imaging and cell sorting were used.

Results

We found that QC activates p21 and DR5 in combination with the apoptosis inducer TRAIL in the breast cancer-derived cells tested. Combined TRAIL and QC treatment increased autophagy and apoptosis by increasing the interaction between, and co-localization of, p21 and DR5 in the death-inducing signaling complex (DISC). We found that this combination also inhibited the mTOR/PI3K/AKT signaling cascade and modulated reactive oxygen species (ROS) and nitric oxide (NO) production. Reductions in autophagy and apoptosis in DR5-knockout cells and a lack of change in p21-DR5-silenced cells were noted after TRAIL + QC treatment. This result explains dependence of the death (autophagy and apoptosis) cascade on these two key regulatory proteins. In addition, we found in an in vivo mouse xenograft model that increased expression and enhanced co-localization of p21 and DR5 after TRAIL + QC treatment supported a joint regulatory role of these proteins in the co-prevalence of autophagy and apoptosis.

Conclusion

Our data suggest that a combined treatment of TRAIL and QC causes cell death in breast cancer-derived cells via autophagy and apoptosis by increasing the interaction of p21 and DR5, as indicated by both in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Lin, E.H. Baehrecke, Autophagy, cell death, and cancer. Mol. Cell. Oncol. 2, e985913 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. Yonekawa, A. Thorburn, Autophagy and cell death. Essays Biochem. 55, 105–117 (2014)

    Article  Google Scholar 

  3. A. Thorburn, Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis 13, 1–9 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P.M. Yang, C.C. Chen, Life or death? Autophagy in anticancer therapies with statins and histone deacetylase inhibitors. Autophagy 7, 107–108 (2011)

    Article  PubMed  Google Scholar 

  5. T.W. Poh, S. Huang, J.L. Hirpara, S. Pervaiz, LY303511 amplifies TRAIL-induced apoptosis in tumor cells by enhancing DR5 oligomerization, DISC assembly, and mitochondrial permeabilization. Cell Death Differ. 14, 1813–1825 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. X. Li, M. You, Y.J. Liu, L. Ma, P.P. Jin, R. Zhou, Z.X. Zhang, B. Hua, X.J. Ji, X.Y. Cheng, F. Yin, Y. Chen, W. Yin, Reversal of the apoptotic resistance of non-small cell lung carcinoma towards TRAIL by natural product Toosendanin. Sci. Rep. 7, 42748 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Das, N. Tripathi, R. Preet, S. Siddharth, A. Nayak, P.V. Bharatam, C.N. Kundu, Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget 8, 248–267 (2017)

    PubMed  Google Scholar 

  8. J.D. Twomey, S.R. Kim, L. Zhao, W.P. Bozza, B. Zhang, Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resist. Updat. 19, 13–21 (2015)

    Article  PubMed  Google Scholar 

  9. J. Han, W. Hou, L.A. Goldstein, C. Lu, D.B. Stolz, X.M. Yin, H. Rabinowich, Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J. Biol. Chem. 283, 19665–19677 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. X. Di, G. Zhang, Y. Zhang, K. Takeda, L.A. Rivera Rosado, B. Zhang, Accumulation of autophagosomes in breast cancer cells induces TRAIL resistance through downregulation of surface expression of death receptors 4 and 5. Oncotarget 4, 1349–1364 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  11. W. Ouyang, C. Yang, Y. Liu, J. Xiong, J. Zhang, Y. Zhong, G. Zhang, F. Zhou, Y. Zhou, C. Xie, Redistribution of DR4 and DR5 in lipid rafts accounts for the sensitivity to TRAIL in NSCLC cells. Int. J. Oncol. 39, 1577–1586 (2011)

    CAS  PubMed  Google Scholar 

  12. L. Xu, X. Hu, X. Qu, K. Hou, H. Zheng, Y. Liu, Cetuximab enhances TRAIL induced gastric cancer cell apoptosis by promoting DISC formation in lipid rafts. Biochem. Biophys. Res. Commun. 439, 285–290 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. D. Wolczyk, M. Zaremba-Czogalla, A. Hryniewicz-Jankowska, R. Tabola, K. Grabowski, A.F. Sikorski, K. Augoff, TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell. Oncol. 39, 353–363 (2016)

  14. W. He, Q. Wang, J. Xu, X. Xu, M.T. Padilla, G. Ren, X. Gou, Y. Lin, Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving T. Autophagy 8, 1811–1821 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Hou, J. Han, C. Lu, L.A. Goldstein, H. Rabinowich, Autophagic degradation of active caspase-8: A crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891–900 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Herrero-Martin, M. Hoyer-Hansen, C. Garcia-Garcia, C. Fumarola, T. Farkas, A. Lopez-Rivas, M. Jaattela, TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677–685 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Li, X. Li, J. Wang, Z. Ye, J.C. Li, Oridonin up-regulates expression of p21 and induces autophagy and apoptosis in human prostate cancer cells. Int. J. Biol. Sci. 8, 901–912 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Liu, W. Lu, S. Li, S. Li, J. Liu, Y. Xing, S. Zhang, J. Zhongxiang Zhou, H. Xing, Y. Xu, Q. Rao, C. Deng, M. Wang, J. Wang, Identification of JL1037 as a novel, specific, reversible lysine-specific demethylase 1 inhibitor that induce apoptosis and autophagy of AML cells. Oncotarget 8, 31901–31914 (2017)

    PubMed  PubMed Central  Google Scholar 

  19. A. Nagappan, W.S. Lee, J.W. Yun, J.N. Lu, S.H. Chang, J.H. Jeong, G.S. Kim, J.M. Jung, S.C. Hong, Tetraarsenic hexoxide induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt suppression and p38 MAPK activation in SW620 human colon cancer cells. PLoS One 12, e0174591 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. J.L. Chang, J.M. Chow, J.H. Chang, Y.C. Wen, Y.W. Lin, S.F. Yang, W.J. Lee, M.H. Chien, Quercetin simultaneously induces G(0) /G(1) phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol. 32, 1857–1868 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. R. Preet, P. Mohapatra, S. Mohanty, S.K. Sahu, T. Choudhuri, M.D. Wyatt, C.N. Kundu, Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int. J. Cancer 130, 1660–1670 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. R. Preet, P. Mohapatra, D. Das, S.R. Satapathy, T. Choudhuri, M.D. Wyatt, C.N. Kundu, Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 34, 277–286 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. R. Preet, S. Siddharth, S.R. Satapathy, S. Das, A. Nayak, D. Das, M.D. Wyatt, C.N. Kundu, Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem. Pharmacol. 105, 23–33 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. J. Ge, Y. Liu, Q. Li, X. Guo, L. Gu, Z.G. Ma, Y.P. Zhu, Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci. 26, 902–911 (2013)

    CAS  PubMed  Google Scholar 

  25. P. Mohapatra, R. Preet, D. Das, S.R. Satapathy, T. Choudhuri, M.D. Wyatt, C.N. Kundu, Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncol. Res. 20, 81–91 (2012)

    Article  PubMed  Google Scholar 

  26. P. Mohapatra, R. Preet, D. Das, S.R. Satapathy, S. Siddharth, T. Choudhuri, M.D. Wyatt, C.N. Kundu, The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K-AKT-NFκB cascade. Toxicol. Appl. Pharmacol. 1, 168–179 (2014)

  27. S.R. Satapathy, P. Mohapatra, D. Das, S. Siddharth, C.N. Kundu, The apoptotic effect of plant based Nanosilver in colon cancer cells is a p53 dependent process involving ROS and JNK cascade. Pathol. Oncol. Res. 21, 405–411 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. D. Das, S.R. Satapathy, S. Siddharth, A. Nayak, C.N. Kundu, NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother. Pharmacol. 76, 471–479 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. S.S. Mpoke, J. Wolfe, Differential staining of apoptotic nuclei in living cells: Application to macronuclear elimination in Tetrahymena. J. Histochem. Cytochem. 45, 675–683 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. T.S. Jani, J. DeVecchio, T. Mazumdar, A. Agyeman, J.A. Houghton, Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J. Biol. Chem. 285, 19162–19172 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W. Wang, J.N. Gallant, S.I. Katz, N.G. Dolloff, C.D. Smith, J. Abdulghani, J.E. Allen, D.T. Dicker, B. Hong, A. Navaraj, W.S. El-Deiry, Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents. Cancer Biol. Ther. 12, 229–238 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. H. Liu, L. Zhang, X. Zhang, Z. Cui, PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. Onco. Targets. Ther. 10, 2865–2871 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  33. R. Ehsanian, C.V. Waes, S.M. Feller, Beyond DNA binding - a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal 15, 9–13 (2011)

    Google Scholar 

  34. C. Guo, A.V. Gasparian, Z. Zhuang, D.A. Bosykh, A.A. Komar, A.V. Gudkov, K.V. Gurova, 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-kappaB and p53 pathways. Oncogene 26, 1151–1161 (2009)

  35. M.R. Lobo, X. Wang, Y. Gillespie, R.L. Woltjer, M.M. Pike, Combined efficacy of Cediranib and Quinacrine in glioma is enhanced by hypoxia and causally linked to autophagic vacuole accumulation. PLoS One 9, e114110 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  36. D. Marklein, U. Graab, I. Naumann, T. Yan, R. Ridzewski, F. Nitzki, A. Rosenberger, K. Dittmann, J. Wienands, L. Wojnowski, S. Fulda, H. Hahn, PI3K Inhibition enhances doxorubicin-induced apoptosis in sarcoma cells. PLoS One 7, e52898 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Tong, W. Zhu, X. Huang, L. You, X. Han, C. Yang, W. Qian, PI3K Inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncol. Rep. 31, 1581–1588 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Cai, X. Tan, J. Liu, Y. Shen, D. Wu, M. Ren, P. Huang, D. Yu, Inhibition of PI3K/Akt/mTOR signaling pathway enhances the sensitivity of the SKOV3/DDP ovarian cancer cell line to cisplatin in vitro. Chin. J. Cancer Res. 26, 564–572 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the Department of Science and Technology (DST) and the Indian Council of Medical Research (ICMR), Government of India, for providing fellowships to SD, AN and SS, respectively. In addition, we sincerely thank Mark Zakshevsky, Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanakya Nath Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Nayak, A., Siddharth, S. et al. TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions. Cell Oncol. 40, 593–607 (2017). https://doi.org/10.1007/s13402-017-0347-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0347-3

Keywords

Navigation