Skip to main content

Advertisement

Log in

Disulfide-stabilized diabody antiCD19/antiCD3 exceeds its parental antibody in tumor-targeting activity

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

A diabody is a bispecific antibody that is capable of recruiting a polyclonal T cell to antibody target-expressing tumor cells. However, the two chains of diabodies tend to dissociate because they are integrated non-covalently. Therefore, it is necessary to remodel the diabody to increase its stability in order to enhance the antitumor activity.

Methods

We constructed an antiCD3×antiCD19 diabody with one binding site for the T cell antigen receptor (TCRCD3) and the other for the B cell-specific antigen (CD19) by recombinant gene engineering technology. Cysteine residues were introduced into the V domains of the anti-CD3 segment. The stability and cytotoxicity of the two diabodies were compared in vitro and vivo.

Results

The disulfide-stabilized (ds) diabodies produced by Escherichia coli were secreted with high yields in a fully active form without a decrease in affinity. Compared with the parental diabody, the disulfide-stabilized (ds) diabody proved more stable in vitro and in vivo without reducing binding affinity. Both were able to effectively eliminate human lymphoma Raji cells by redirecting T lymphocytes in vitro and in vivo, but the ds diabody was more effective in inhibiting the growth of xenografts transplanted in BALB/C nude mice.

Conclusion

The antiCD3×antiCD19 ds diabody is more suitable for a controlled polyclonal T cell therapy of human CD19-positive B cell malignancies than its parental diabody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Andreadis, S.J. Schuster, E.A. Chong, J. Svoboda, S.M. Luger, D.L. Porter et al., Long-term event-free survivors after high-dose therapy and autologous stem-cell transplantation for low-grade follicular lymphoma. Bone Marrow Transplant. 36, 955–961 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. B. Reismüller, A. Attarbaschi, C. Peters, M.N. Dworzak, U. Pötschger, C. Urban et al., Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria—a population-based report of the Austrian Berlin-Frankfurt-Münster (BFM) Study Group. Br. J. Haematol. 144, 559–570 (2009)

    Article  PubMed  Google Scholar 

  3. P. Tsirigotis, T. Economopoulos, Monoclonal antibodies in the treatment of lymphoid malignancies. J. Steroid Biochem. Mol. Biol. 108, 267–271 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. E. Oflazoglu, L.P. Audoly, Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MABS. 2, 14–19 (2010)

    Article  PubMed  Google Scholar 

  5. J.O. Richards, S. Karki, G.A. Lazar, H. Chen, W. Dang, J.R. Desjarlais, Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 7, 2517–2527 (2008)

    Article  PubMed  CAS  Google Scholar 

  6. Y.H. Qu, Y. Li, Y.F. Wu, J.P. Fang, S.L. Huang, Y. Huang et al., Influence of FcγRIIIa polymorphism on rituximab-dependent NK cell-mediated cytotoxicity to Raji cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 18, 1269–1274 (2010)

    PubMed  CAS  Google Scholar 

  7. M. Peipp, T. Valerius, Bispecific antibodies targeting cancer cells. Biochem. Soc. Trans. 30, 507–511 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. P.A. Baeuerle, P. Kufer, R. Lutterbüse, Bispecific antibodies for polyclonal T-cell engagement. Curr. Opin. Mol. Ther. 5, 413–419 (2003)

    PubMed  CAS  Google Scholar 

  9. K. Brischwein, L. Parr, S. Pflanz, J. Volkland, J. Lumsden, M. Klinger et al., Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother. 30, 798–807 (2007)

    Article  PubMed  CAS  Google Scholar 

  10. A. Löffler, P. Kufer, R. Lutterbüse, F. Zettl, P.T. Daniel, J.M. Schwenkenbecher et al., A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098–2103 (2000)

    PubMed  Google Scholar 

  11. Y. Reiter, U. Brinkmann, S.H. Jung, B. Lee, P.G. Kasprzyk, C.R. King et al., Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J. Biol. Chem. 269, 18327–18331 (1994)

    PubMed  CAS  Google Scholar 

  12. R.F. Graziano, P. Guptill, Chemical production of bispecific antibodies. Methods Mol. Biol. 283, 71–85 (2004)

    PubMed  CAS  Google Scholar 

  13. Y. Reiter, R.J. Kreitman, U. Brinkmann, I. Pastan, Cytotoxic and antitumor activity of a recombinant immunotoxin composed of disulfide-stabilized anti-Tac Fv fragment and truncated Pseudomonas exotoxin. Int. J. Cancer 58, 142–149 (1994)

    Article  PubMed  CAS  Google Scholar 

  14. Y. Reiter, L.H. Pai, U. Brinkmann, Q.C. Wang, I. Pastan, Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Cancer Res. 54, 2714–2718 (1994)

    PubMed  CAS  Google Scholar 

  15. J. Liu, M. Yang, J. Wang, Y. Xu, Y. Wang, X. Shao et al., Improvement of tumor targeting and antitumor activity by a disulphide bond stabilized diabody expressed in Escherichia coli. Cancer Immunol. Immunother. 58, 1761–1769 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. D.C. Shen, X.F. Yang, A high affinity CD3 monoclonal antibody HIT3a. Acta Acad. Med. Sin. 15, 157–162 (1993)

    CAS  Google Scholar 

  17. S. Chen, Q. Rao, J.X. Wang, M. Wang, Construction and expression of single chain variable fragments (ScFv) against human CD19 antigen. Sheng Wu Gong Cheng Xue Bao. 21, 686–691 (2005)

    PubMed  CAS  Google Scholar 

  18. Z. Zhu, P. Rockwell, D. Lu, H. Kotanides, B. Pytowski, D.J. Hicklin et al., Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domaincontaining receptor single-chain antibodies from a phage display library. Cancer Res. 58, 3209–3214 (1998)

    PubMed  CAS  Google Scholar 

  19. B. Schlereth, C. Quadt, T. Dreier, P. Kufer, G. Lorenczewski, N. Prang et al., T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol. Immunother. 55, 503–514 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Y. Xu, D. Xiong, C. Yang, Z. Lai, H. Liu, X. He et al., The mutation of anti-CD3 antibody (HIT3a) gene and its expression. Zhonghua Xue Ye Xue Za Zhi 22, 252–255 (2001) [In Chinese.]

    PubMed  CAS  Google Scholar 

  21. B.D. Choi, M. Cai, D.D. Bigner, A.I. Mehta, C.T. Kuan, J.H. Sampson, Bispecific antibodies engage T cells for antitumor immunotherapy. Expert. Opin. Biol. Ther. 11, 843–853 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. P. Holliger, T. Prospero, G. Winter, “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. U.S.A. 90, 6444–6448 (2003)

    Article  Google Scholar 

  23. Z. Zhu, G. Zapata, M.R. Shalaby, B. Snedecor, H. Chen, P. Carter, High level secretion of a humanized bispecific diabody from Escherichia coli. Bio/Technology 14, 192–196 (1996)

    Article  PubMed  CAS  Google Scholar 

  24. P. Carter, J. Ridgway, Z. Zhu, Toward the production of bispecific antibody fragments for clinical applications. J. Hematother. 4, 463–470 (1995)

    Article  PubMed  CAS  Google Scholar 

  25. U. Bfinkmann, I. Pastan, Recombinant immunotoxins: from basic research to cancer therapy. Methods 8, 143–156 (1995)

    Article  Google Scholar 

  26. Y. Reiter, I. Pastan, Antibody engineering of recombinant Fv immunotoxins for improved targeting of cancer: disulfide-stabilized Fv immunotoxins. Clin. Cancer Res. 2, 245–252 (1996)

    PubMed  CAS  Google Scholar 

  27. Y. Reiter, U. Brinkmann, K. Webber, S.-H. Jung, B.K. Lee, I. Pastan, Engineering interchain disulfide bonds into conserved framework regions of Fv fragments: improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv. Protein Eng. 7, 697–704 (1994)

    Article  PubMed  CAS  Google Scholar 

  28. G.A. Leget, M.S. Czuczman, Use of rituximab, the new FDA-approved antibody. Curr. Opin. Oncol. 10, 548–551 (2008)

    Article  Google Scholar 

  29. R. Vereecque, A. Saudemont, B. Quesnel, Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia 18, 1223–1230 (2004)

    Article  PubMed  CAS  Google Scholar 

  30. M.M. Goldenberg, Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer [J]. Clin. Ther. 21, 309–318 (2009)

    Article  Google Scholar 

  31. R.E. Jimenez, M.M. Zalupski, J.J. Frank, W. Du, J.R. Ryan, D.R. Lucas, Multidrug resistance phenotype in high grade soft tissue sarcoma: correlation of P-glycoprotein immunohistochemistry with pathologic response to chemotherapy. Cancer 86(6), 976–981 (2008)

    Article  Google Scholar 

  32. V.V. Rao, D.C. Anthony, D. Piwnica-Worms, Multidrug resistance P-glycoprotein monoclonal antibody JSB-1 crossreacts with pyruvate carboxylase. J. Histochem. Cytochem. 43, 1187–1192 (2009)

    Article  Google Scholar 

  33. M. Yang, D.M. Fan, Y.D. Gao, Y. Zhou, Q. Ji, X.F. Shao, J.H. Wang, Y.F. Xu, D.S. Xiong, C.Z. Yang, The influence of Ara-C on anti-CD3/anti-Pgp mediating T-lymphocytes activities against multi-drug resistant leukemia cells. Zhonghua Xue Ye Xue Za Zhi 30, 812–815 (2009) [In Chinese.]

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Natural Science Foundation of China (Grant Nos. 30873091 and 30971291), the Natural Science Foundation of Tianjin (Grant No. 05YFGZGX02800), the National Science and Technology Major Project (Grant No. 2009ZX09103-720).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Ming, Wang Jianxiang or Xiong DongSheng.

Additional information

Li Wei and Fan DongMei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., DongMei, F., Ming, Y. et al. Disulfide-stabilized diabody antiCD19/antiCD3 exceeds its parental antibody in tumor-targeting activity. Cell Oncol. 35, 423–434 (2012). https://doi.org/10.1007/s13402-012-0101-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0101-9

Keywords

Navigation