Skip to main content

Advertisement

Log in

Inhibition of IGF-1R-dependent PI3K activation sensitizes colon cancer cells specifically to DR5-mediated apoptosis but not to rhTRAIL

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2011

Abstract

Background

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) initiates apoptosis in tumor cells upon binding to its cognate agonistic receptors, death receptors 4 and 5 (DR4 and DR5). The activity of the insulin-like growth factor 1 (IGF-1) survival pathway is often increased in cancer, influencing both cell proliferation and apoptosis. We hypothesized that inhibiting the IGF-1 receptor (IGF-1R) using NVP-AEW541, a small molecular weight tyrosine kinase inhibitor of the IGF-1R, could increase death receptor (DR)-mediated apoptosis in colon cancer cells.

Methods

The analyses were performed by caspase assay, flow cytometry, Western blotting, immunoprecipitation and fluorescent microscopy.

Results

Preincubation with NVP-AEW541 surprisingly decreased apoptosis induced by recombinant human TRAIL (rhTRAIL) or an agonistic DR4 antibody while sensitivity to an agonistic DR5 antibody was increased. NVP-AEW541 could inhibit IGF-1-induced activation of the phosphatidylinositol 3-kinase (PI3K) pathway. The effects of the PI3K inhibitor LY294002 on TRAIL-induced apoptosis were similar to those of NVP-AEW541, further supporting a role for IGF-1R-mediated activation of PI3K. We show that PI3K inhibition enhances DR5-mediated caspase 8 processing but also lowers DR4 membrane expression and DR4-mediated caspase 8 processing. Inhibition of PI3K reduced rhTRAIL sensitivity independently of the cell line preference for either DR4- or DR5-mediated apoptosis signaling.

Conclusions

Our study indicates that individual effects on DR4 and DR5 apoptosis signaling should be taken into consideration when combining DR-ligands with PI3K inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Data not shown

  2. Data not shown

  3. Data not shown

  4. Data not shown

  5. Results not shown.

References

  1. D. Cunningham, W. Atkin, H.J. Lenz, H.T. Lynch, B. Minsky, B. Nordlinger, N. Starling, Colorectal cancer. Lancet 375, 1030–1047 (2010)

    Article  PubMed  Google Scholar 

  2. S. Kopetz, G.J. Chang, M.J. Overman, C. Eng, D.J. Sargent, D.W. Larson, A. Grothey, J.-N. Vauthey, D.M. Nagorney, R.R. McWilliams, Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27, 3677–3683 (2009)

    Article  PubMed  Google Scholar 

  3. E.W. Duiker, C.H. Mom, S. de Jong, P.H. Willemse, J.A. Gietema, A.G. van der Zee, E.G.E. de Vries, The clinical trail of TRAIL. Eur J Cancer 42, 2233–2240 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. R.S. Herbst, S.G. Eckhardt, R. Kurzrock, S. Ebbinghaus, P.J. O’Dwyer, M.S. Gordon, W. Novotny, M.A. Goldwasser, T.M. Tohnya, B.L. Lum, A. Ashkenazi, A.M. Jubb, D.S. Mendelson, Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28, 2839–2846 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. J. Soria, E. Smit, D. Khayat, B. Besse, X. Yang, C. Hsu, D. Reese, J. Wiezorek, F. Blackhall, Phase 1b Study of Dulanermin (recombinant human Apo2L/TRAIL) in Combination With Paclitaxel, Carboplatin, and Bevacizumab in Patients With Advanced Non-Squamous Non-Small-Cell Lung Cancer. J Clin Oncol 28, 1527–1533 (2010)

    Article  PubMed  CAS  Google Scholar 

  6. F.C. Kischkel, D.A. Lawrence, A. Tinel, H. LeBlanc, A. Virmani, P. Schow, Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276, 46639–46646 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. R.M. Pitti, S.A. Marsters, S. Ruppert, C.J. Donahue, A. Moore, A. Ashkenazi, Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271, 12687–12690 (1996)

    Article  PubMed  CAS  Google Scholar 

  8. S.R. Wiley, K. Schooley, P.J. Smolak, W.S. Din, C.P. Huang, J.K. Nicholl, G.R. Sutherland, T.D. Smith, C. Rauch, C.A. Smith, Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995)

    Article  PubMed  CAS  Google Scholar 

  9. A. Ashkenazi, R.C. Pai, S. Fong, S. Leung, D.A. Lawrence, S.A. Marsters, C. Blackie, L. Chang, A.E. McMurtrey, A. Hebert, L. DeForge, I.L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, R.H. Schwall, Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104, 155–162 (1999)

    Article  PubMed  CAS  Google Scholar 

  10. H. Walczak, R.E. Miller, K. Ariail, B. Gliniak, T.S. Griffith, M. Kubin, W. Chin, J. Jones, A. Woodward, T. Le, C. Smith, P. Smolak, R.G. Goodwin, C.T. Rauch, J.C. Schuh, D.H. Lynch, Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5, 157–163 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. R.F. Kelley, K. Totpal, S.H. Lindstrom, M. Mathieu, K. Billeci, L. DeForge, R. Pai, S.G. Hymowitz, A. Ashkenazi, Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 280, 2205–2212 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. M. MacFarlane, S.L. Kohlhaas, M.J. Sutcliffe, M.J. Dyer, G.M. Cohen, TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 65, 11265–11270 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. A.M. van der Sloot, V. Tur, E. Szegezdi, M.M. Mullally, R.H. Cool, A. Samali, L. Serrano, W.J. Quax, Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci U S A 103, 8634–8639 (2006)

    Article  PubMed  Google Scholar 

  14. A. Chuntharapai, K. Dodge, K. Grimmer, K. Schroeder, S.A. Marsters, H. Koeppen, A. Ashkenazi, K.J. Kim, Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 166, 4891–4898 (2001)

    PubMed  CAS  Google Scholar 

  15. T.S. Griffith, C.T. Rauch, P.J. Smolak, J.Y. Waugh, N. Boiani, D.H. Lynch, C.A. Smith, R.G. Goodwin, M.Z. Kubin, Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 162, 2597–2605 (1999)

    PubMed  CAS  Google Scholar 

  16. K. Ichikawa, W. Liu, L. Zhao, Z. Wang, D. Liu, T. Ohtsuka, H. Zhang, J.D. Mountz, W.J. Koopman, R.P. Kimberly, T. Zhou, Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7, 954–960 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. L. Pukac, P. Kanakaraj, R. Humphreys, R. Alderson, M. Bloom, C. Sung, T. Riccobene, R. Johnson, M. Fiscella, A. Mahoney, J. Carrell, E. Boyd, X.T. Yao, L. Zhang, L. Zhong, K.A. Von, L. Shepard, T. Vaughan, B. Edwards, C. Dobson, T. Salcedo, V. Albert, HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92, 1430–1441 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. A. Hague, D.J. Hicks, F. Hasan, H. Smartt, G.M. Cohen, C. Paraskeva, M. MacFarlane, Increased sensitivity to TRAIL-induced apoptosis occurs during the adenoma to carcinoma transition of colorectal carcinogenesis. Br J Cancer 92, 736–742 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. J.J. Koornstra, S. de Jong, H. Hollema, E.G.E. de Vries, J.H. Kleibeuker, Changes in apoptosis during the development of colorectal cancer: a systematic review of the literature. Crit Rev Oncol Hematol 45, 37–53 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. R.W. Johnstone, A.J. Frew, M.J. Smyth, The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8, 782–798 (2008)

    Article  PubMed  CAS  Google Scholar 

  21. B. Pennarun, A. Meijer, E.G.E. de Vries, J.H. Kleibeuker, F.A. Kruyt, S. de Jong, Playing the DISC: Turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta Rev Cancer 1805, 123–140 (2010)

    CAS  Google Scholar 

  22. S.J. Cohen, R.B. Cohen, N.J. Meropol, Targeting signal transduction pathways in colorectal cancer–more than skin deep. J Clin Oncol 23, 5374–5385 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. M. Cuello, S.A. Ettenberg, A.S. Clark, M.M. Keane, R.H. Posner, M.M. Nau, P.A. Dennis, S. Lipkowitz, Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61, 4892–4900 (2001)

    PubMed  CAS  Google Scholar 

  24. C.S. Mitsiades, N. Mitsiades, V. Poulaki, R. Schlossman, M. Akiyama, D. Chauhan, T. Hideshima, S.P. Treon, N.C. Munshi, P.G. Richardson, K.C. Anderson, Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21, 5673–5683 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. S.Y. Park, D.W. Seol, Regulation of Akt by EGF-R inhibitors, a possible mechanism of EGF-R inhibitor-enhanced TRAIL-induced apoptosis. Biochem Biophys Res Commun 295, 515–518 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. D. LeRoith, C.T. Roberts Jr., The insulin-like growth factor system and cancer. Cancer Lett 195, 127–137 (2003)

    Article  PubMed  CAS  Google Scholar 

  27. R. Baserga, F. Peruzzi, K. Reiss, The IGF-1 receptor in cancer biology. Int J Cancer 107, 873–877 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. M.M. Weber, C. Fottner, S.B. Liu, M.C. Jung, D. Engelhardt, G.B. Baretton, Overexpression of the insulin-like growth factor I receptor in human colon carcinomas. Cancer 95, 2086–2095 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. W.H. Hu, H. Johnson, H.B. Shu, Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem 274, 30603–30610 (1999)

    Article  PubMed  CAS  Google Scholar 

  30. B.P. Zhou, M.C. Hu, S.A. Miller, Z. Yu, W. Xia, S.Y. Lin, M.C. Hung, HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275, 8027–8031 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. J. Luo, B.D. Manning, L.C. Cantley, Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003)

    Article  PubMed  CAS  Google Scholar 

  32. K.A. West, S.S. Castillo, P.A. Dennis, Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5, 234–248 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. A. Gualberto, M. Pollak, Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene 28, 3009–3021 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. P. Workman, P.A. Clarke, F.I. Raynaud, R.L. van Montfort, Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 70, 2146–2157 (2010)

    Article  PubMed  CAS  Google Scholar 

  35. C.S. Mitsiades, N.S. Mitsiades, C.J. McMullan, V. Poulaki, R. Shringarpure, M. Akiyama, T. Hideshima, D. Chauhan, M. Joseph, T.A. Libermann, A.A. Combining, M.A. Pearson, F. Hofmann, K.C. Anderson, A.L. Kung, Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5, 221–230 (2004)

    Article  PubMed  CAS  Google Scholar 

  36. E.H. Walker, M.E. Pacold, O. Perisic, L. Stephens, P.T. Hawkins, M.P. Wymann, R.L. Williams, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6, 909–919 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. C.M.M. van Geelen, E.G.E. de Vries, T.K.P. Le, R.P. van Weeghel, S. de Jong, Differential modulation of the TRAIL receptors and the CD95 receptor in colon carcinoma cell lines. Br J Cancer 89, 363–373 (2003)

    Article  PubMed  Google Scholar 

  38. C.M.M. van Geelen, B. Pennarun, W. Boersma-Van Ek, P.T.K. Le, D.C. Spierings, E.G.E. De Vries, S. de Jong, Downregulation of active caspase 8 as a mechanism of acquired TRAIL resistance in mismatch repair-proficient colon carcinoma cell lines. Int J Oncol 37, 1031–1041 (2010)

    PubMed  Google Scholar 

  39. I. Nicoletti, G. Migliorati, M.C. Pagliacci, F. Grignani, C. Riccardi, A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Meth 139, 271–279 (1991)

    Article  CAS  Google Scholar 

  40. S. Hofbauer, G. Hamilton, G. Theyer, K. Wollmann, F. Gabor, Insulin-like growth factor-I-dependent growth and in vitro chemosensitivity of Ewing’s sarcoma and peripheral primitive neuroectodermal tumour cell lines. Eur J Cancer 29A, 241–245 (1993)

    Article  PubMed  CAS  Google Scholar 

  41. B.C. Turner, B.G. Haffty, L. Narayanan, J. Yuan, P.A. Havre, A.A. Gumbs, L. Kaplan, J.L. Burgaud, D. Carter, R. Baserga, P.M. Glazer, Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57, 3079–3083 (1997)

    PubMed  CAS  Google Scholar 

  42. Y. Wu, M. Tewari, S. Cui, R. Rubin, Activation of the insulin-like growth factor-I receptor inhibits tumor necrosis factor-induced cell death. J Cell Physiol 168, 499–509 (1996)

    Article  PubMed  CAS  Google Scholar 

  43. K.G. Drosopoulos, M.L. Roberts, L. Cermak, T. Sasazuki, S. Shirasawa, L. Andera, A. Pintzas, Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem 280, 22856–22867 (2005)

    Article  PubMed  CAS  Google Scholar 

  44. L. Dubska, L. Andera, M.A. Sheard, HER2 signaling downregulation by trastuzumab and suppression of the PI3K/Akt pathway: an unexpected effect on TRAIL-induced apoptosis. FEBS Lett 579, 4149–4158 (2005)

    Article  PubMed  CAS  Google Scholar 

  45. D. Mahalingam, M. Keane, G. Pirianov, H. Mehmet, A. Samali, E. Szegezdi, Differential activation of JNK1 isoforms by TRAIL receptors modulate apoptosis of colon cancer cell lines. Br J Cancer 100, 1415–1424 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. M. Remacle-Bonnet, F. Garrouste, G. Baillat, F. Andre, J. Marvaldi, G. Pommier, Membrane rafts segregate pro- from anti-apoptotic insulin-like growth factor-I receptor signaling in colon carcinoma cells stimulated by members of the tumor necrosis factor superfamily. Am J Pathol 167, 761–773 (2005)

    Article  PubMed  CAS  Google Scholar 

  47. D.J. Panka, T. Mano, T. Suhara, K. Walsh, J.W. Mier, Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 276, 6893–6896 (2001)

    Article  PubMed  CAS  Google Scholar 

  48. M.H. Cardone, N. Roy, H.R. Stennicke, G.S. Salvesen, T.F. Franke, E. Stanbridge, S. Frisch, J.C. Reed, Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998)

    Article  PubMed  CAS  Google Scholar 

  49. S.R. Datta, H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, M.E. Greenberg, Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997)

    Article  PubMed  CAS  Google Scholar 

  50. L. del Peso, M. Gonzalez-Garcia, C. Page, R. Herrera, G. Nunez, Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997)

    Article  PubMed  Google Scholar 

  51. L.R. Thomas, R.L. Johnson, J.C. Reed, A. Thorburn, The C-terminal tails of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas receptors have opposing functions in Fas-associated death domain (FADD) recruitment and can regulate agonist-specific mechanisms of receptor activation. J Biol Chem 279, 52479–52486 (2004)

    Article  PubMed  CAS  Google Scholar 

  52. M. Hassan, O. Feyen, E. Grinstein, Fas-induced apoptosis of renal cell carcinoma is mediated by apoptosis signal-regulating kinase 1 via mitochondrial damage-dependent caspase-8 activation. Cell Oncol 31, 437–456 (2009)

    PubMed  CAS  Google Scholar 

  53. S. Wang, W.S. El Deiry, Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci U S A 100, 15095–15100 (2003)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven de Jong.

Additional information

This paper is a reprint of ‘Inhibition of IGF-1R-dependent PI3K activation sensitizes colon cancer cells specifically to DR5-mediated apoptosis but not to rhTRAIL, Bodvael Pennarun, Jan H. Kleibeuker, Tjitske Oenema, Janet H. Stegehuis, Elisabeth G.E. de Vries, Steven de Jong’ originally published in Analytical Cellular Pathology/Cellular Oncology, Volume 33, number 5–6, 2010, pp. 229–244, IOS Press.

An erratum to this article can be found at http://dx.doi.org/10.1007/s13402-011-0055-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennarun, B., Kleibeuker, J.H., Oenema, T. et al. Inhibition of IGF-1R-dependent PI3K activation sensitizes colon cancer cells specifically to DR5-mediated apoptosis but not to rhTRAIL. Cell Oncol. 34, 245–259 (2011). https://doi.org/10.1007/s13402-011-0033-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0033-9

Keywords

Navigation