Skip to main content

Advertisement

Log in

Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 20 August 2011

Abstract

Background

The simultaneous detection of protein expression and gene copy number changes in patient samples, like paraffin-embedded tissue sections, is challenging since the procedures of immunohistochemistry (IHC) and Fluorescence in situ Hybridization (FISH) negatively influence each other which often results in suboptimal staining. Therefore, we developed a novel automated algorithm based on relocation which allows subsequent detection of protein content and gene copy number changes within the same cell.

Methods

Paraffin-embedded tissue sections of colorectal cancers were stained for CD133 expression. IHC images were acquired and image coordinates recorded. Slides were subsequently hybridized with fluorescently labeled DNA probes. FISH images were taken at the previously recorded positions allowing for direct comparison of protein expression and gene copy number signals within the same cells/tissue areas. Relocation, acquisition of the IHC and FISH images, and enumeration of FISH signals in the immunophenotyped tumour areas were done in an automated fashion.

Results

Automated FISH analysis was performed on 13 different colon cancer samples that had been stained for CD133; each sample was scored for MYC, ZNF217 and Chromosome 6 in CD133 positive and negative glands. From the 13 cases four (31%) showed amplification for the MYC oncogene and seven of 13 (54%) cases were amplified for ZNF217. There was no significant difference between CD133 positive tumour and CD133 negative tumour cells.

Conclusion

The technique and algorithm presented here enables an easy and reproducible combination of IHC and FISH based on a novel automated algorithm using relocation and automated spot counting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N.A. Jambhekar, A.C. Chaturvedi, B.P. Madur, Immunohistochemistry in surgical pathology practice: a current perspective of a simple, powerful, yet complex, tool. Indian J Pathol Microbiol 51, 2–11 (2008)

    Article  PubMed  Google Scholar 

  2. A. Bressenot, S. Marchal, L. Bezdetnaya, J. Garrier, F. Guillemin, F. Plenat, Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem 57, 289–300 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. M.V. Rojiani, D.W. Siemann, A.M. Rojiani, Appl. Immunohistochem. Mol. Morphol. Cell proliferation index determination by immunohistochemical detection of hCDC47 Protein (2009)

  4. R. Moll, M. Divo, L. Langbein, The human keratins: biology and pathology. Histochem Cell Biol 129, 705–733 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. M.G. Tibiletti, B. Bernasconi, A. Dionigi, C. Riva, The applications of FISH in tumor pathology. Adv Clin Path 3, 111–118 (1999)

    PubMed  CAS  Google Scholar 

  6. C. Donadoni, S. Corti, F. Locatelli, D. Papadimitriou, M. Guglieri, S. Strazzer, P. Bossolasco, S. Salani, G.P. Comi, Improvement of combined FISH and immunofluorescence to trace the fate of somatic stem cells after transplantation. J Histochem Cytochem 52, 1333–1339 (2004)

    PubMed  CAS  Google Scholar 

  7. K. Khosrotehrani, H. Stroh, D.W. Bianchi, K.L. Johnson, Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques 34, 242–244 (2003)

    PubMed  CAS  Google Scholar 

  8. Loerch T, Piper J, Tomisek JD (2002) “Tile sampling”: a new method for the automated quantitative analyses of samples with high cell density and its application to Her2 scanning. Proceedings of the Third Euroconference on Quantitative Molecular Cytogenetics, Rosenön, Stockholm, Sweden, July 4–6 2002, 9–14

  9. Piper J, Loerch T, Poole I, Tomisek JD (2002) Computing the Her2:CEP-17 ratio of tumour cells in breast cancer tissue sections by analysis of the FISH spot counts of a tiles sampling. Proceedings of the Third Euroconference on Quantitative Molecular Cytogenetics, Rosenön, Stockholm, Sweden, July 4–6 2002, 54–59.

  10. J. Camps, M. Grade, Q.T. Nguyen, P. Hormann, S. Becker, A.B. Hummon, V. Rodriguez, S. Chandrasekharappa, Y. Chen, M.J. Difilippantonio, H. Becker, B.M. Ghadimi, T. Ried, Chromosomal breakpoints in primary colon cancer cluster at sites of structural variants in the genome. Cancer Res 68, 1284–1295 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. G.A. Meijer, M.A. Hermsen, J.P. Baak, P.J. van Diest, S.G. Meuwissen, J.A. Belien, J.M. Hoovers, H. Joenje, P.J. Snijders, J.M. Walboomers, Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol 51, 901–909 (1998)

    Article  PubMed  CAS  Google Scholar 

  12. T. Ried, R. Knutzen, R. Steinbeck, H. Blegen, E. Schrock, K. Heselmeyer, S. du Manoir, G. Auer, Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15, 234–245 (1996)

    Article  PubMed  CAS  Google Scholar 

  13. K. Al-Kuraya, H. Novotny, P. Bavi, A.K. Siraj, S. Uddin, A. Ezzat, N.A. Sanea, F. Al-Dayel, H. Al-Mana, S.S. Sheikh, M. Mirlacher, C. Tapia, R. Simon, G. Sauter, L. Terracciano, L. Tornillo, HER2, TOP2A, CCND1, EGFR and C-MYC oncogene amplification in colorectal cancer. J Clin Pathol 60, 768–772 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. P.H. Rooney, A. Boonsong, M.C. McFadyen, H.L. McLeod, J. Cassidy, S. Curran, G.I. Murray, The candidate oncogene ZNF217 is frequently amplified in colon cancer. J Pathol 204, 282–288 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. C. Postma, M.A. Hermsen, J. Coffa, J.P. Baak, J.D. Mueller, E. Mueller, B. Bethke, J.P. Schouten, M. Stolte, G.A. Meijer, Chromosomal instability in flat adenomas and carcinomas of the colon. J Pathol 205, 514–521 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. C.A. O’Brien, A. Pollett, S. Gallinger, J.E. Dick, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007)

    Article  PubMed  Google Scholar 

  17. L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria, Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. C. Lottner, S. Schwarz, S. Diermeier, A. Hartmann, R. Knuechel, F. Hofstaedter, G. Brockhoff, Simultaneous detection of HER2/neu gene amplification and protein overexpression in paraffin-embedded breast cancer. J Pathol 205, 577–584 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. L.D. Cooley, J.T. Mascarello, B. Hirsch, P.B. Jacky, P.N. Rao, D. Saxe, K.W. Rao, Section E6.5 of the ACMG technical standards and guidelines: chromosome studies for solid tumor abnormalities. Genet Med 11, 890–897 (2009)

    Article  PubMed  Google Scholar 

  20. M. Bilous, M. Dowsett, W. Hanna, J. Isola, A. Lebeau, A. Moreno, F. Penault-Llorca, J. Ruschoff, G. Tomasic, M. van de Vijver, Current perspectives on HER2 testing: a review of national testing guidelines. Mod Pathol 16, 173–182 (2003)

    Article  PubMed  Google Scholar 

  21. M. Hofmann, O. Stoss, T. Gaiser, H. Kneitz, P. Heinmoller, T. Gutjahr, M. Kaufmann, T. Henkel, J. Ruschoff, Central HER2 IHC and FISH analysis in a trastuzumab (Herceptin) phase II monotherapy study: assessment of test sensitivity and impact of chromosome 17 polysomy. J Clin Pathol 61, 89–94 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. G. Sauter, J. Lee, J.M. Bartlett, D.J. Slamon, M.F. Press, Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol 27, 1323–1333 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. A.C. Wolff, M.E. Hammond, J.N. Schwartz, K.L. Hagerty, D.C. Allred, R.J. Cote, M. Dowsett, P.L. Fitzgibbons, W.M. Hanna, A. Langer, L.M. McShane, S. Paik, M.D. Pegram, E.A. Perez, M.F. Press, A. Rhodes, C. Sturgeon, S.E. Taube, R. Tubbs, G.H. Vance, M. van de Vijver, T.M. Wheeler, D.F. Hayes, American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131, 18–43 (2007)

    PubMed  CAS  Google Scholar 

  24. M. Brunelli, E. Manfrin, G. Martignoni, K. Miller, A. Remo, D. Reghellin, S. Bersani, S. Gobbo, A. Eccher, M. Chilosi, F. Bonetti, Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification: evaluation according to ASCO/CAP criteria. Am J Clin Pathol 131, 678–682 (2009)

    Article  PubMed  Google Scholar 

  25. G.H. Vance, T.S. Barry, K.J. Bloom, P.L. Fitzgibbons, D.G. Hicks, R.B. Jenkins, D.L. Persons, R.R. Tubbs, M.E. Hammond, Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch Pathol Lab Med 133, 611–612 (2009)

    PubMed  Google Scholar 

  26. C.B. Moelans, R.A. de Weger, M.T. van Blokland, C. Ezendam, S. Elshof, M.G. Tilanus, P.J. van Diest, HER-2/neu amplification testing in breast cancer by multiplex ligation-dependent probe amplification in comparison with immunohistochemistry and in situ hybridization. Cell Oncol 31, 1–10 (2009)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The classifiers for this algorithm are available from Metasystems Group Inc. at support@metasystems.org.

The authors thank Buddy Chen for preparing figures and IT related support.

Timo Gaiser is supported by a fellowship within the post doctorate program of the Mildred Scheel Foundation. The study was supported by the Intramural Research Program by the NIH, National Cancer Institute.

Conflict of interest

Aparajita Dutta is employed as Client Services Manager and Application Scientist with MetaSystems Company. All others authors declare no conflict of interest. No conflict exists for materials or devices used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ried.

Additional information

This is a reprint from ‘Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue, Timo Gaiser, Lissa Berroa-Garcia, Ralf Kemmerling, Aparajita Dutta, Thomas Ried, Kerstin Heselmeyer-Haddad’ originally published in Analytical Cellular Pathology/Cellular Oncology, Volume 33, number 2, 2010, pp. 105–112, IOS Press.

An erratum to this article can be found at http://dx.doi.org/10.1007/s13402-011-0057-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaiser, T., Berroa-Garcia, L., Kemmerling, R. et al. Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue. Cell Oncol. 34, 337–342 (2011). https://doi.org/10.1007/s13402-011-0032-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0032-x

Keywords

Navigation