Skip to main content

Advertisement

Log in

High-rate biogas production from cattle manure in an integrated microbial electrolysis cell and anaerobic reactor system

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the biogas production performance of an integrated microbial electrolysis cell and anaerobic reactor system (MEC-AR) treating cattle manure at different applied voltages and hydraulic retention times (HRT) ranging from 6 days to 1 day. The MEC-AR system was operated in semi-continuous mode under various voltage applications of 0.3, 0.6, and 1.0 V and organic loading rates (OLR) ranging from 5 g VS/L/d to 30 g VS/L/d. The MEC-AR system presented 25 to 62% higher biogas production and 10 to 21% higher organic removal rates compared to the control reactor, until the control reactor deteriorated at the HRT of 3 days. As the HRT was decreased further, biogas production of the MEC-AR system increased depending on the applied OLR and voltage. Maximum biogas productions, 4.88 L/L/d (CH4: 76%) and 5.10 L/L/d (CH4: 77%), were observed at HRT of 2 days and OLR of 30 g VS/L/d in MEC-AR0.6 V and MEC-AR1.0 V, respectively. Higher applied voltages (MEC-AR0.6 V and MEC-AR1.0 V) resulted in higher biogas production (16 to 21%) and organic removal rates (9 to 21%) compared to lower applied voltage (MEC-AR0.3 V) especially at high OLRs (22.5 and 30 g VS/L/d). As a result, MEC-AR system can be operated efficiently at challenging operational conditions (as low as 1 and 2 days; OLR of 15–30 g VS/L.d.) that conventional anaerobic reactors cannot withstand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

The datasets generated during the current study are not publicly available because the study was a part of Ph.D. thesis. However, the datasets are available from the corresponding author on a reasonable request.

References

  1. Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res 56:11–25. https://doi.org/10.1016/j.watres.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  2. Kadier A, Simayi Y, Kalil MS et al (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472. https://doi.org/10.1016/j.renene.2014.05.052

    Article  CAS  Google Scholar 

  3. Escapa A, Mateos R, Martínez EJ, Blanes J (2016) Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery: from laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55:942–956. https://doi.org/10.1016/j.rser.2015.11.029

    Article  CAS  Google Scholar 

  4. Chae KJ, Choi MJ, Kim KY et al (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrogen Energy 35:13379–13386. https://doi.org/10.1016/j.ijhydene.2009.11.114

    Article  CAS  Google Scholar 

  5. Hou Y, Luo H, Liu G et al (2014) Improved Hydrogen Production in the Microbial Electrolysis Cell by Inhibiting Methanogenesis Using Ultraviolet Irradiation. Environ Sci Technol 48:10482–10488. https://doi.org/10.1021/es501202e

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Park DH, Laivenieks M, Guettler MV et al (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917. https://doi.org/10.1128/aem.65.7.2912-2917.1999

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geppert F, Liu D, van Eerten-Jansen M et al (2016) Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives. Trends Biotechnol 34:879–894. https://doi.org/10.1016/j.tibtech.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  8. van der Ha D, Crab R, Verstraete W et al (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579. https://doi.org/10.2166/wst.2008.084

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Zhang Y, Liu Y et al (2016) Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens. Bioresour Technol 218:505–511. https://doi.org/10.1016/j.biortech.2016.06.112

    Article  CAS  PubMed  Google Scholar 

  10. Karthikeyan R, Cheng KY, Selvam A et al (2017) Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells- A review. Biotechnol Adv 35:758–771. https://doi.org/10.1016/j.biotechadv.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  11. Cheng S, Xing D, Call DF, Logan BE (2009) Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ Sci Technol 43:3953–3958. https://doi.org/10.1021/es803531g

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090

    Article  CAS  PubMed  Google Scholar 

  13. Blasco-Gómez R, Batlle-Vilanova P, Villano M et al (2017) On the edge of research and technological application: A critical review of electromethanogenesis. Int J Mol Sci 18:1–32. https://doi.org/10.3390/ijms18040874

    Article  CAS  Google Scholar 

  14. Yu Z, Leng X, Zhao S et al (2018) A review on the applications of microbial electrolysis cells in anaerobic digestion. Biores Technol 255:340–348. https://doi.org/10.1016/j.biortech.2018.02.003

    Article  CAS  Google Scholar 

  15. Zakaria BS, Dhar BR (2019) Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. Bioresour Technol 289:121738. https://doi.org/10.1016/j.biortech.2019.121738

    Article  CAS  PubMed  Google Scholar 

  16. de Vrieze J, Arends JBA, Verbeeck K et al (2018) Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. Water Res 146:244–255. https://doi.org/10.1016/j.watres.2018.08.045

    Article  CAS  PubMed  Google Scholar 

  17. Kadier A, Kalil MS, Abdeshahian P et al (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev 61:501–525. https://doi.org/10.1016/j.rser.2016.04.017

    Article  CAS  Google Scholar 

  18. Tufaner F, Avsar Y (2016) Effects of co-substrate on biogas production from cattle manure: a review. Int J Environ Sci Technol 13:2303–2312. https://doi.org/10.1007/s13762-016-1069-1

    Article  CAS  Google Scholar 

  19. Li Y, Zhao J, Krooneman J et al (2021) Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Sci Total Environ 755:142940. https://doi.org/10.1016/j.scitotenv.2020.142940

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bi S, Hong X, Yang H et al (2020) Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste. Renew Energy 150:213–220. https://doi.org/10.1016/j.renene.2019.12.091

    Article  CAS  Google Scholar 

  21. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: A review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: A review. Appl Energy 240:120–137. https://doi.org/10.1016/j.apenergy.2019.01.243

    Article  ADS  CAS  Google Scholar 

  23. Holman JP (2011) Experimental methods for engineers (8th edn). McGraw-Hill, Singapore City

  24. American Public Health Association, American Water Works Association, Water Environment Federation (2023) 2540 solids, standard methods for the examination of water and wastewater (24th ed.). In: Lipps WC, Braun-Howland EB, Baxter TE (eds). APHA Press, Washington DC

  25. Ma J, Frear C, Wang ZW et al (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395. https://doi.org/10.1016/j.biortech.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  26. Zhen G, Lu X, Kumar G et al (2017) Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Prog Energy Combust Sci 63:119–145. https://doi.org/10.1016/j.pecs.2017.07.003

    Article  Google Scholar 

  27. Abdallah M, Shanableh A, Adghim M et al (2018) Biogas production from different types of cow manure. In: Advances in Science and Engineering Technology International Conferences (ASET), Dubai, Sharjah, Abu Dhabi, United Arab Emirates, pp 1–4. https://doi.org/10.1109/ICASET.2018.8376791

  28. Díaz-Vázquez D, Alvarado-Cummings SC, Meza-Rodríguez D et al (2020) Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México. Sustainability 12:3527. https://doi.org/10.3390/su12093527

    Article  Google Scholar 

  29. Liu Y, Li Y, Gan R et al (2020) Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system. Chem Eng J 389:124510. https://doi.org/10.1016/j.cej.2020.124510

    Article  CAS  Google Scholar 

  30. Yu J, Kim S, Kwon OS (2019) Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure. J Ind Microbiol Biotechnol 46:911–923. https://doi.org/10.1007/s10295-019-02182-6

    Article  CAS  PubMed  Google Scholar 

  31. Ahn Y, Im S, Chung JW (2017) Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge. Int J Hydrogen Energy 42:27784–27791. https://doi.org/10.1016/j.ijhydene.2017.05.139

    Article  CAS  Google Scholar 

  32. Angelidaki I, Karakashev D, Batstone DJ et al (2011) Chp 16 Biomethanation and its potential. In: Rosenzweig AC, Ragsdale SW (eds.) Methods in Enzymology. Academic Press Inc, vol 494, pp 327–351. https://doi.org/10.1016/B978-0-12-385112-3.00016-0

  33. Sawyerr N, Trois C, Workneh T, Okudoh V (2019) An overview of biogas production: Fundamentals, applications and future research. Int J Energy Econ Policy 9:105–116. https://doi.org/10.32479/ijeep.7375

    Article  Google Scholar 

  34. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. https://doi.org/10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  35. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836. https://doi.org/10.1007/s00253-008-1796-4

    Article  CAS  PubMed  Google Scholar 

  36. Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrogen Energy 38:1342–1347. https://doi.org/10.1016/j.ijhydene.2012.11.087

    Article  CAS  Google Scholar 

  37. Zhao Z, Zhang Y, Chen S et al (2014) Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor. Sci Rep 4:1–8. https://doi.org/10.1038/srep06658

    Article  CAS  Google Scholar 

  38. Quiroga G, Castrillón L, Fernández-Nava Y et al (2014) Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresour Technol 154:74–79. https://doi.org/10.1016/j.biortech.2013.11.096

    Article  CAS  PubMed  Google Scholar 

  39. Liebetrau J, O’Shea R, Wellisch M, Lyng KA, Bochmann G, McCabe BK, Harris PW, Lukehurst C, Kornatz P, Murphy JD (2021) Potential and utilization of manure to generate biogas in seven countries. In: Murphy, JD (ed). IEA Bioenergy Task 37, p 6

  40. Khoshnevisan B, Duan N, Tsapekos P et al (2021) A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew Sustain Energy Rev 135:110033. https://doi.org/10.1016/j.rser.2020.110033

    Article  Google Scholar 

  41. Ormaechea P, Castrillón L, Suárez-Peña B et al (2018) Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM. Renew Energy 126:897–904. https://doi.org/10.1016/j.renene.2018.04.022

    Article  CAS  Google Scholar 

  42. Li D, Liu S, Mi L, et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. 189:319–326https://doi.org/10.1016/j.biortech.2015.04.033

  43. Nagao N, Tajima N, Kawai M et al (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol 118:210–218. https://doi.org/10.1016/j.biortech.2012.05.045

    Article  CAS  PubMed  Google Scholar 

  44. Parajuli A, Khadka A, Sapkota L, Ghimire A (2022) Effect of hydraulic retention time and organic-loading rate on two-staged, semi-continuous mesophilic anaerobic digestion of food waste during start-up. Fermentation 8:620. https://doi.org/10.3390/fermentation8110620

    Article  CAS  Google Scholar 

  45. Farghali M, Mayumi M, Syo K et al (2020) Potential of biogas production from manure of dairy cattle fed on natural soil supplement rich in iron under batch and semi-continuous anaerobic digestion. Bioresour Technol 309:123298. https://doi.org/10.1016/j.biortech.2020.123298

    Article  CAS  PubMed  Google Scholar 

  46. Park J, Lee B, Tian D, Jun H (2018) Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour Technol 247:226–233. https://doi.org/10.1016/j.biortech.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  47. Song YC, Feng Q, Ahn Y (2016) Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times. Energy Fuels 30:352–359. https://doi.org/10.1021/acs.energyfuels.5b02003

    Article  CAS  Google Scholar 

  48. Hou Y, Zhang R, Luo H et al (2015) Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem 50:1103–1109. https://doi.org/10.1016/j.procbio.2015.04.001

    Article  CAS  Google Scholar 

  49. Choi KS, Kondaveeti S, Min B (2017) Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresour Technol 245:826–832. https://doi.org/10.1016/j.biortech.2017.09.057

    Article  CAS  PubMed  Google Scholar 

  50. Flores-Rodriguez C, Nagendranatha Reddy C, Min B (2019) Enhanced methane production from acetate intermediate by bioelectrochemical anaerobic digestion at optimal applied voltages. Biomass Bioenergy 127:105261. https://doi.org/10.1016/j.biombioe.2019.105261

    Article  CAS  Google Scholar 

  51. Xiao B, Chen X, Han Y et al (2018) Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells. Renew Energy 115:1177–1183. https://doi.org/10.1016/j.renene.2017.06.043

    Article  CAS  Google Scholar 

  52. Feng Q, Song YC, Bae BU (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Biores Technol 220:500–508. https://doi.org/10.1016/j.biortech.2016.08.085

    Article  CAS  Google Scholar 

  53. Ding A, Yang Y, Sun G, Wu D (2015) Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J 283:260–265. https://doi.org/10.1016/j.cej.2015.07.054

    Article  CAS  Google Scholar 

  54. Flores-rodriguez C, Min B (2020) Enhanced methane production from acetate intermediate by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. Bioresour Technol 300:122624. https://doi.org/10.1016/j.biortech.2019.122624

    Article  CAS  PubMed  Google Scholar 

  55. Cerrillo M, Viñas M, Bonmatí A (2018) Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane. Renew Energy 120:178–189. https://doi.org/10.1016/j.renene.2017.12.062

    Article  CAS  Google Scholar 

  56. Asztalos JR, Kim Y (2015) Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature. Water Resour 87:503–512. https://doi.org/10.1016/j.watres.2015.05.045

    Article  CAS  Google Scholar 

  57. Labatut RA, Pronto JL (2018) Chp. 4. Sustainable waste-to-energy technologies: Anaerobic digestion. In: Trabold TA, Babbitt CW (ed) Sustainable Food Waste-to-Energy Systems, Elsevier Inc. pp 47–67. https://doi.org/10.1016/B978-0-12-811157-4.00004-8

  58. Nghiem LD, Manassa P, Dawson M, Fitzgerald SK (2014) Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Biores Technol 173:443–447. https://doi.org/10.1016/j.biortech.2014.09.052

    Article  CAS  Google Scholar 

  59. Vongvichiankul C, Deebao J, Khongnakorn W (2017) Relationship between pH, oxidation reduction potential (ORP) and biogas production in mesophilic screw anaerobic digester. Energy Procedia 138:877–882. https://doi.org/10.1016/j.egypro.2017.10.113

    Article  CAS  Google Scholar 

  60. Cusick RD, Bryan B, Parker DS et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063. https://doi.org/10.1007/s00253-011-3130-9

    Article  CAS  PubMed  Google Scholar 

  61. Xu S, Zhang Y, Luo L, Liu H (2019) Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon. Bioresour Technol Rep 5:91–98. https://doi.org/10.1016/j.biteb.2018.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hussain A, Lebrun FM, Tartakovsky B (2017) Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell. Enzyme Microb Technol 102:41–48. https://doi.org/10.1016/j.enzmictec.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  63. Park JG, Lee B, Kwon HJ, Jun HB (2019) Contribution analysis of methane production from food waste in bulk solution and on bio-electrode in a bio-electrochemical anaerobic digestion reactor. Sci Total Environ 670:741–751. https://doi.org/10.1016/j.scitotenv.2019.02.112

    Article  ADS  CAS  PubMed  Google Scholar 

  64. de Vrieze J, Gildemyn S, Arends JBA et al (2014) Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54:211–221. https://doi.org/10.1016/j.watres.2014.01.044

    Article  CAS  PubMed  Google Scholar 

  65. Cai W, Han T, Guo Z et al (2016) Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresour Technol 208:13–18. https://doi.org/10.1016/j.biortech.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  66. Guo Z, Thangavel S, Wang L et al (2017) Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode: The effect of the cathode/anode ratio on bioenergy recovery. Energy Fuels 31:615–620. https://doi.org/10.1021/acs.energyfuels.6b02375

    Article  CAS  Google Scholar 

Download references

Funding

Partial financial support was received from the Scientific Research Projects Coordination Unit (Project No: FHD-2020–18581) of Hacettepe University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Kenan Dalkilic. The first draft of the manuscript was written by Kenan Dalkilic and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kenan Dalkilic.

Ethics declarations

Ethical approval

There were no human nor animals involved in this study.

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkilic, K., Ugurlu, A. High-rate biogas production from cattle manure in an integrated microbial electrolysis cell and anaerobic reactor system. Biomass Conv. Bioref. 14, 7181–7196 (2024). https://doi.org/10.1007/s13399-023-04290-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-04290-x

Keywords

Navigation