Skip to main content

Advertisement

Log in

Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The biofuel yield from lignocellulose biomass depends strongly on the fermentable sugar yield from the hydrolysis step. Enzymatic hydrolysis, the preferable hydrolysis method, gives low sugar yield due to the lignin existence and the cellulose crystallinity. To increase the sugar yield, pretreatment is required to breakdown the recalcitrant nature of lignocellulose biomass. This review paper presents a comprehensive critical review of the lignocellulosic biomass (LCB) pretreatment methods for enhanced fermentable sugar yield. There is a need for an effective and cost-efficient pretreatment method that curbs inhibitory products and reduces the use of chemicals and energy. This paper highlighted recent advances in agricultural-based LCB pretreatment; discussed current challenges, advantages, and disadvantages; and suggested future solutions for agricultural-based biofuel production. Examined methods include pulsed electric energy (PEE), ionic liquid, co-solvent enhanced lignocellulosic fractionation pretreatment, and deep eutectic solvent. Each method was reviewed by its conditions (indicate the use of energy and chemicals), sugar yield, and inhibitory products. The review also researched the synergistic effect of combining more than one pretreatment method as a potential approach to overcome the drawbacks of the individual methods. In addition, the paper suggested improvement for each method and identified the research gaps to be bridged. Also, a comparison, summary, and research perspectives were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang H, Yang B, Zhang Q, Zhu W (2020) Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renew Sustain Energy Rev 12. https://doi.org/10.1016/j.rser.2019.109612

  2. Sher F, Iqbal SZ, Liu H, et al (2020) Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: a way forward to renewable energy sources. Energy Convers Manag 203: https://doi.org/10.1016/j.enconman.2019.112266

  3. Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001. https://doi.org/10.1088/1748-9326/2/2/024001

    Article  CAS  ADS  Google Scholar 

  4. Bradford H (2019) Canada Biofuels Annual. USDA. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels Annual_Ottawa_Canada_8-9-2019.pdf. Accessed 07 Feb 2022

  5. Kumar G, Bakonyi P, Periyasamy S et al (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728–737. https://doi.org/10.1016/J.RSER.2015.01.042

    Article  CAS  Google Scholar 

  6. Li X, Mupondwa E, Panigrahi S et al (2012) A review of agricultural crop residue supply in Canada for cellulosic ethanol production. Renew Sustain Energy Rev 16:2954–2965. https://doi.org/10.1016/J.RSER.2012.02.013

    Article  CAS  Google Scholar 

  7. Li J, Wang C, Yang Z (2010) Production and separation of phenols from biomass-derived bio-petroleum. J Anal Appl Pyrolysis 89:218–224. https://doi.org/10.1016/J.JAAP.2010.08.004

    Article  CAS  Google Scholar 

  8. Luo Y, Li Z, Li X et al (2019) The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal Today 319:14–24. https://doi.org/10.1016/J.CATTOD.2018.06.042

    Article  CAS  Google Scholar 

  9. Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101:4806–4813. https://doi.org/10.1016/J.BIORTECH.2009.10.098

    Article  CAS  PubMed  Google Scholar 

  10. Mupondwa E, Li X, Tabil L et al (2017) Status of Canada’s lignocellulosic ethanol: part I: pretreatment technologies. Renew Sustain Energy Rev 72:178–190. https://doi.org/10.1016/j.rser.2017.01.039

    Article  CAS  Google Scholar 

  11. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. https://doi.org/10.1021/ie801542g

  12. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/J.BIORTECH.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  13. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/J.BIORTECH.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  14. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Biorefin 2:26–40. https://doi.org/10.1002/bbb.49

    Article  CAS  Google Scholar 

  15. Aden A, Ruth M, Ibsen K et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL. https://www.nrel.gov/docs/fy02osti/32438.pdf. Accessed 29 June 2022

  16. Chiaramonti D, Prussi M, Ferrero S et al (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. https://doi.org/10.1016/J.BIOMBIOE.2012.04.020

    Article  CAS  Google Scholar 

  17. Agrawal R, Satlewal A, Gaur R et al (2015) Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation. Biochem Eng J 102:54–61. https://doi.org/10.1016/J.BEJ.2015.02.018

    Article  CAS  Google Scholar 

  18. Dai L, Wang Y, Liu Y et al (2019) Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review. Renew Sustain Energy Rev 107:20–36. https://doi.org/10.1016/J.RSER.2019.02.015

    Article  CAS  Google Scholar 

  19. Vorobiev E, Lebovka N (2017) Application of pulsed electric energy for lignocellulosic biorefinery. In: Miklavčič D (ed) Handbook of electroporation. Springer, Cham, pp 2843–2861

    Chapter  Google Scholar 

  20. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. https://doi.org/10.1002/bbb.4

    Article  CAS  Google Scholar 

  21. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev 43:1427–1445. https://doi.org/10.1016/J.RSER.2014.11.092

    Article  CAS  Google Scholar 

  22. Beguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  PubMed  Google Scholar 

  23. Kuhad RC, Singh A, Eriksson K-EL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg, pp 45–125

  24. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/J.BIOTECHADV.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  26. Pérez J, Muñoz-Dorado J, De La Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  CAS  PubMed  Google Scholar 

  27. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  28. Lama-Muñoz A, del Mar Contreras M, Espínola F, et al (2020) Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem 329. https://doi.org/10.1016/j.foodchem.2020.127153

  29. Morone A, Pandey RA, Chakrabarti T (2018) Comparative evaluation of OrganoCat and selected advanced oxidation processes as pretreatment to enhance cellulose accessibility of rice straw. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.03.039

    Article  Google Scholar 

  30. Reshamwala S, Shawky BT, Dale BE (1995) Ethanol production from enzymatic hydrolysates of AFEX-treated coastal bermudagrass and switchgrass. Appl Biochem Biotechnol 51–52: https://doi.org/10.1007/BF02933410

  31. Asakawa A, Kohara M, Sasaki C et al (2015) Comparison of choline acetate ionic liquid pretreatment with various pretreatments for enhancing the enzymatic saccharification of sugarcane bagasse. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2015.03.073

    Article  Google Scholar 

  32. Peng H, Luo H, Jin S et al (2014) Improved bioethanol production from corn stover by alkali pretreatment with a novel pilot-scale continuous microwave irradiation reactor. Biotechnol Bioprocess Eng. https://doi.org/10.1007/s12257-014-0014-8

    Article  Google Scholar 

  33. Wyman CE, Dale BE, Elander RT et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. https://doi.org/10.1016/j.biortech.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  34. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/J.BIORTECH.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  35. Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 63–65:3–19. https://doi.org/10.1007/BF02920408

    Article  Google Scholar 

  36. Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263. https://doi.org/10.1016/0144-4565(88)90107-2

    Article  CAS  Google Scholar 

  37. Izumi K, Okishio Y, Nagao N et al (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegradation 64:601–608. https://doi.org/10.1016/J.IBIOD.2010.06.013

    Article  CAS  Google Scholar 

  38. Dahunsi S (2019) Mechanical pretreatment of lignocelluloses for enhanced biogas production: methane yield prediction from biomass structural components. Bioresour Technol 280:18–26. https://doi.org/10.1016/J.BIORTECH.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  39. Tsapekos P, Kougias PG, Angelidaki I (2018) Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Manag 78:903–910. https://doi.org/10.1016/J.WASMAN.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez C, Alaswad A, El-Hassan Z, Olabi AG (2017) Mechanical pretreatment of waste paper for biogas production. Waste Manag 68:157–164. https://doi.org/10.1016/J.WASMAN.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  41. Herrmann C, Heiermann M, Idler C, Prochnow A (2012) Particle size reduction during harvesting of crop feedstock for biogas production I: effects on ensiling process and methane yields. Bioenergy Res 5:926–936. https://doi.org/10.1007/s12155-012-9206-2

    Article  CAS  Google Scholar 

  42. Herrmann C, Prochnow A, Heiermann M, Idler C (2012) Particle size reduction during harvesting of crop feedstock for biogas production II: effects on energy balance, greenhouse gas emissions and profitability. Bioenergy Res 5:937–948. https://doi.org/10.1007/s12155-012-9207-1

    Article  CAS  Google Scholar 

  43. Tsapekos P, Kougias PG, Egelund H et al (2017) Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses. Renew Energy 111:914–921. https://doi.org/10.1016/J.RENENE.2017.04.061

    Article  Google Scholar 

  44. Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399. https://doi.org/10.1002/ceat.201000357

    Article  CAS  Google Scholar 

  45. de Vrije T, de Haas GG, Tan GB et al (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390. https://doi.org/10.1016/S0360-3199(02)00124-6

    Article  Google Scholar 

  46. Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157. https://doi.org/10.1016/0269-7483(89)90069-4

    Article  CAS  Google Scholar 

  47. Kreuger E, Sipos B, Zacchi G et al (2011) Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. Bioresour Technol 102:3457–3465. https://doi.org/10.1016/J.BIORTECH.2010.10.126

    Article  CAS  PubMed  Google Scholar 

  48. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/J.BIORTECH.2018.04.099

    Article  CAS  PubMed  Google Scholar 

  49. Wang K, Xiong X, Chen J, et al (2012) Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2012.08.013

  50. Khan F, Ahmad SR, Kronfli E (2006) γ-radiation induced changes in the physical and chemical properties of lignocellulose. Biomacromolecules 7: https://doi.org/10.1021/bm060168y

  51. Wu X, Chen L, He W, et al (2020) Characterize the physicochemical structure and enzymatic efficiency of agricultural residues exposed to γ-irradiation pretreatment. Ind Crops Prod 150: https://doi.org/10.1016/j.indcrop.2020.112228

  52. Glegg RE, Kertesz ZI (1956) Aftereffect in the degradation of cellulose and pectin by gamma rays. Science (80- ) 124: https://doi.org/10.1126/science.124.3227.893

  53. Khan F (2005) Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by γ-radiation. Macromol Biosci 5: https://doi.org/10.1002/mabi.200400137

  54. Yang C, Shen Z, Yu G, Wang J (2008) Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour Technol 99: https://doi.org/10.1016/j.biortech.2007.12.008

  55. Hyun Hong S, Taek Lee J, Lee S, et al (2014) Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production. Radiat Phys Chem 94: https://doi.org/10.1016/j.radphyschem.2013.05.056

  56. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4: https://doi.org/10.1186/s40643-017-0137-9

  57. Jackowiak D, Frigon JC, Ribeiro T et al (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540. https://doi.org/10.1016/J.BIORTECH.2010.11.069

    Article  CAS  PubMed  Google Scholar 

  58. Jackowiak D, Bassard D, Pauss A, Ribeiro T (2011) Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresour Technol 102:6750–6756. https://doi.org/10.1016/J.BIORTECH.2011.03.107

    Article  CAS  PubMed  Google Scholar 

  59. Sapci Z (2013) The effect of microwave pretreatment on biogas production from agricultural straws. Bioresour Technol 128:487–494. https://doi.org/10.1016/J.BIORTECH.2012.09.094

    Article  CAS  PubMed  Google Scholar 

  60. Li L, Kong X, Yang F et al (2012) Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Appl Biochem Biotechnol 166:1183–1191. https://doi.org/10.1007/s12010-011-9503-9

    Article  CAS  PubMed  Google Scholar 

  61. Liu CZ, Cheng XY (2009) Microwave-assisted acid pretreatment for enhancing biogas production from herbal-extraction process residue. Energy Fuels. https://doi.org/10.1021/ef900607f

    Article  Google Scholar 

  62. Cheng XY, Liu CZ (2010) Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.2278

    Article  Google Scholar 

  63. Diaz AB, Moretti MM de S, Bezerra-Bussoli C, et al (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.02.112

  64. Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK (2018) A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresour Technol 248:272–279. https://doi.org/10.1016/J.BIORTECH.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  65. Liang J, Xu X, Yu Z, et al (2019) Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust. Bioresour Technol 122080. https://doi.org/10.1016/J.BIORTECH.2019.122080

  66. Tsegaye B, Balomajumder C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers Manag 186:82–92. https://doi.org/10.1016/J.ENCONMAN.2019.02.049

    Article  CAS  Google Scholar 

  67. Kitchaiya P, Intanakul P, Krairiksh M (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol. https://doi.org/10.1081/WCT-120021926

    Article  Google Scholar 

  68. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378. https://doi.org/10.1016/J.BEJ.2007.08.001

    Article  CAS  Google Scholar 

  69. Peng H, Chen H, Qu Y et al (2014) Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Appl Energy 117:142–148. https://doi.org/10.1016/J.APENERGY.2013.12.002

    Article  CAS  ADS  Google Scholar 

  70. Binod P, Satyanagalakshmi K, Sindhu R et al (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37:109–116. https://doi.org/10.1016/J.RENENE.2011.06.007

    Article  CAS  Google Scholar 

  71. Zhu Z, Liu Y, Gómez LD, et al (2021) Thermochemical pretreatments of maize stem for sugar recovery: comparative evaluation of microwave and conventional heating. Ind Crops Prod 160: https://doi.org/10.1016/j.indcrop.2020.113106

  72. Sun RC, Tomkinson J (2002) Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr Polym 50:263–271. https://doi.org/10.1016/S0144-8617(02)00037-1

    Article  CAS  Google Scholar 

  73. Zhang YQ, Fu E, Liang J (2008) Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chem Eng Technol. https://doi.org/10.1002/ceat.200700407

    Article  Google Scholar 

  74. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/J.PECS.2014.01.001

    Article  Google Scholar 

  75. Kunaver M, Jasiukaityte E, Čuk N (2012) Ultrasonically assisted liquefaction of lignocellulosic materials. Bioresour Technol 103: https://doi.org/10.1016/j.biortech.2011.09.051

  76. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580. https://doi.org/10.1021/ie3022785

    Article  CAS  Google Scholar 

  77. Ur Rehman MS, Kim I, Chisti Y, Han JI (2013) Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ. Sci Technol Part A Energy Sci Res 30:359–378

    Google Scholar 

  78. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy. https://doi.org/10.1166/jbmb.2009.1002

    Article  Google Scholar 

  79. Montalbo-Lomboy M, Johnson L, Khanal SK et al (2010) Sonication of sugary-2 corn: a potential pretreatment to enhance sugar release. Bioresour Technol 101:351–358. https://doi.org/10.1016/J.BIORTECH.2009.07.075

    Article  CAS  PubMed  Google Scholar 

  80. Aimin T, Hongwei Z, Gang C et al (2005) Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2004.07.003

    Article  PubMed  Google Scholar 

  81. Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2010.10.040

    Article  PubMed  Google Scholar 

  82. Patil RS, Joshi SM, Gogate PR (2019) Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound. Ultrason Sonochem 58:104656. https://doi.org/10.1016/J.ULTSONCH.2019.104656

    Article  CAS  PubMed  Google Scholar 

  83. Bussemaker MJ, Mu X, Zhang D (2013) Ultrasonic pretreatment of wheat straw in oxidative and nonoxidative conditions aided with microwave heating. Ind Eng Chem Res. https://doi.org/10.1021/ie401181f

    Article  Google Scholar 

  84. Li Q, Guo C, Liu C-Z (2014) Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass Bioenerg 64:220–229. https://doi.org/10.1016/J.BIOMBIOE.2014.03.053

    Article  Google Scholar 

  85. Li H, Qu Y, Yang Y et al (2016) Microwave irradiation – a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41. https://doi.org/10.1016/J.BIORTECH.2015.08.099

    Article  CAS  PubMed  Google Scholar 

  86. Golberg A, Sack M, Teissie J et al (2016) Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol Biofuels 9:1–22. https://doi.org/10.1186/s13068-016-0508-z

    Article  Google Scholar 

  87. Knorr D, Geulen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends Food Sci Technol 5:71–75. https://doi.org/10.1016/0924-2244(94)90240-2

    Article  CAS  Google Scholar 

  88. Lindmark J, Lagerkvist A, Nilsson E et al (2014) Evaluating the effects of electroporation pre-treatment on the biogas yield from ley crop silage. Appl Biochem Biotechnol 174:2616–2625. https://doi.org/10.1007/s12010-014-1213-7

    Article  CAS  PubMed  Google Scholar 

  89. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2011) Pulsed electric field pretreatment of switchgrass and wood chip species for biofuel production. Ind Eng Chem Res 50:10996–11001. https://doi.org/10.1021/ie200555u

    Article  CAS  Google Scholar 

  90. Almohammed F, Mhemdi H, Vorobiev E (2016) Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production. Appl Energy. https://doi.org/10.1016/j.apenergy.2015.10.050

    Article  Google Scholar 

  91. Garoma T, Shackelford T (2014) Electroporation of Chlorella vulgaris to enhance biomethane production. Bioresour Technol 169:778–783. https://doi.org/10.1016/j.biortech.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  92. Carlsson M, Lagerkvist A, Ecke H (2008) Electroporation for enhanced methane yield from municipal solid waste. ORBIT 2008 Mov Org Waste Recycl Towar Resour Manag Biobased Econ 6:1–8

    Google Scholar 

  93. Choi H, Jeong S-W, Chung Y (2006) Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique. Bioresour Technol 97:198–203. https://doi.org/10.1016/J.BIORTECH.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  94. Loginova KV, Shynkaryk MV, Lebovka NI, Vorobiev E (2010) Acceleration of soluble matter extraction from chicory with pulsed electric fields. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2009.08.009

    Article  Google Scholar 

  95. Bouras M, Grimi N, Bals O, Vorobiev E (2016) Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind Crops Prod 80:50–58. https://doi.org/10.1016/j.indcrop.2015.10.051

    Article  CAS  Google Scholar 

  96. Zhao W, Yu Z, Liu J et al (2011) Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. J Sci Food Agric. https://doi.org/10.1002/jsfa.4440

    Article  PubMed  Google Scholar 

  97. Luengo E, Martínez JM, Álvarez I, Raso J (2016) Effects of millisecond and microsecond pulsed electric fields on red beet cell disintegration and extraction of betanines. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2016.01.016

    Article  Google Scholar 

  98. Boussetta N, Lanoisellé JL, Bedel-Cloutour C, Vorobiev E (2009) Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: effect of sulphur dioxide and thermal treatments. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2009.04.030

    Article  Google Scholar 

  99. Boussetta N, Vorobiev E, Reess T et al (2012) Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: effect of the dynamic shock waves. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2012.05.004

    Article  Google Scholar 

  100. Boussetta N, Turk M, De Taeye C et al (2013) Effect of high voltage electrical discharges, heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2013.06.004

    Article  Google Scholar 

  101. Rajha HN, Boussetta N, Louka N et al (2014) A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res Int. https://doi.org/10.1016/j.foodres.2014.04.024

    Article  Google Scholar 

  102. Chadni M, Grimi N, Ziegler-Devin I et al (2019) High voltage electric discharges treatment for high molecular weight hemicelluloses extraction from spruce. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115019

    Article  PubMed  Google Scholar 

  103. Brahim M, El Kantar S, Boussetta N et al (2016) Delignification of rapeseed straw using innovative chemo-physical pretreatments. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2016.09.019

    Article  Google Scholar 

  104. Boussetta N, Lesaint O, Vorobiev E (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg Technol 19:124–132. https://doi.org/10.1016/J.IFSET.2013.03.007

    Article  CAS  Google Scholar 

  105. El Kantar S, Boussetta N, Rajha HN et al (2018) High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels. Food Res Int 107:755–762. https://doi.org/10.1016/j.foodres.2018.01.070

    Article  CAS  PubMed  Google Scholar 

  106. Brahim M, Checa Fernandez BL, Regnier O et al (2017) Impact of ultrasounds and high voltage electrical discharges on physico-chemical properties of rapeseed straw’s lignin and pulps. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.04.003

    Article  PubMed  Google Scholar 

  107. Wang Y-Z, Zhang L, Xu T, Ding K (2017) Improving lignocellulose enzymatic saccharification in a bioreactor with an applied electric field. Ind Crops Prod 109:404–409. https://doi.org/10.1016/J.INDCROP.2017.08.061

    Article  CAS  Google Scholar 

  108. García-Cubero MT, González-Benito G, Indacoechea I et al (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613. https://doi.org/10.1016/J.BIORTECH.2008.09.012

    Article  PubMed  Google Scholar 

  109. Vidal PF, Molinier J (1988) Ozonolysis of lignin - improvement of in vitro digestibility of poplar sawdust. Biomass. https://doi.org/10.1016/0144-4565(88)90012-1

    Article  Google Scholar 

  110. Quesada J, Rubio M, Gómez D (1999) Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol. https://doi.org/10.1080/02773819909349603

    Article  Google Scholar 

  111. Li C, Wang L, Chen Z, et al (2021) Ozonolysis of wheat bran in subcritical water for enzymatic saccharification and polysaccharide recovery. J Supercrit Fluids 168: https://doi.org/10.1016/j.supflu.2020.105092

  112. Travaini R, Barrado E, Bolado-Rodríguez S (2016) Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse. Bioresour Technol 214:150–158. https://doi.org/10.1016/J.BIORTECH.2016.04.102

    Article  CAS  PubMed  Google Scholar 

  113. dos Santos LC, Adarme OFH, Baêta BEL et al (2018) Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.05.037

    Article  PubMed  Google Scholar 

  114. Travaini R, Otero MDM, Coca M, et al (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133: https://doi.org/10.1016/j.biortech.2013.01.133

  115. Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12. https://doi.org/10.1016/j.biortech.2015.08.143

    Article  CAS  PubMed  Google Scholar 

  116. Schultz-Jensen N, Kádár Z, Thomsen AB, et al (2011) Plasma-assisted pretreatment of wheat straw for ethanol production. Appl Biochem Biotechnol 165: https://doi.org/10.1007/s12010-011-9316-x

  117. Jung YH, Kim KH (2015) Acidic pretreatment. In: Pretreatment of biomass. Elsevier, pp 27–50

  118. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng. https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068

    Article  Google Scholar 

  119. Martin C, Alriksson B, Sjöde A et al (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137–140:339–352. https://doi.org/10.1007/s12010-007-9063-1

    Article  PubMed  ADS  Google Scholar 

  120. Zheng Y, Pan Z, Zhang R et al (2007) Evaluation of different biomass materials as feedstock for fermentable sugar production. Appl Biochem Biotechnol 137–140:423–435. https://doi.org/10.1007/s12010-007-9069-8

    Article  PubMed  ADS  Google Scholar 

  121. Lawford HG, Rousseau JD, Tolan JS (2001) Comparative ethanol productivities of different zymomonas recombinants fermenting oat hull hydrolysate. Appl Biochem Biotechnol 91–93:133–146. https://doi.org/10.1385/ABAB:91-93:1-9:133

    Article  PubMed  Google Scholar 

  122. Makarova EI, Budaeva VV, Skiba EA (2014) Enzymatic hydrolysis of cellulose from oat husks at different substrate concentrations. Russ J Bioorganic Chem 40:726–732. https://doi.org/10.1134/S1068162014070103

    Article  CAS  Google Scholar 

  123. Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96:1599–1606. https://doi.org/10.1016/J.BIORTECH.2004.12.022

    Article  CAS  PubMed  Google Scholar 

  124. Castro E, Díaz MJ, Cara C et al (2011) Dilute acid pretreatment of rapeseed straw for fermentable sugar generation. Bioresour Technol 102:1270–1276. https://doi.org/10.1016/J.BIORTECH.2010.08.057

    Article  CAS  PubMed  Google Scholar 

  125. Cantarella M, Mucciante C, Cantarella L (2014) Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: a study in continuous stirred ultrafiltration-membrane reactor. Bioresour Technol 156:48–56. https://doi.org/10.1016/J.BIORTECH.2013.12.124

    Article  CAS  PubMed  Google Scholar 

  126. Zhang R, Lu X, Sun Y et al (2011) Modeling and optimization of dilute nitric acid hydrolysis on corn stover. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.2529

    Article  Google Scholar 

  127. Skiba EA, Budaeva VV, Baibakova OV et al (2017) Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem Eng J 126:118–125. https://doi.org/10.1016/J.BEJ.2016.09.003

    Article  CAS  Google Scholar 

  128. Nair RB, Lundin M, Brandberg T et al (2015) Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crops Prod 69:314–323. https://doi.org/10.1016/J.INDCROP.2015.02.038

    Article  CAS  Google Scholar 

  129. Nair RB, Lundin M, Lennartsson PR, Taherzadeh MJ (2017) Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using Neurospora intermedia. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5119

    Article  Google Scholar 

  130. Majumdar S, Naha A, Bhattacharyya DK, Bhowal J (2019) Effective delignification and decrystallization of cauliflower wastes by using dilute phosphoric acid for efficient enzymatic digestibility to produce fermentable sugars. Biomass Bioenerg 125:169–179. https://doi.org/10.1016/J.BIOMBIOE.2019.04.017

    Article  CAS  Google Scholar 

  131. Yu H, Xiao W, Han L, Huang G (2019) Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresour Technol 282:69–74. https://doi.org/10.1016/J.BIORTECH.2019.02.104

    Article  CAS  PubMed  Google Scholar 

  132. Um B-H, Karim MN, Henk LL (2003) Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl Biochem Biotechnol 105:115–126. https://doi.org/10.1385/ABAB:105:1-3:115

    Article  PubMed  Google Scholar 

  133. Nair RB, Kalif M, Ferreira JA et al (2017) Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.125

    Article  PubMed  Google Scholar 

  134. Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog. https://doi.org/10.1021/bp010028u

    Article  PubMed  Google Scholar 

  135. Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng. https://doi.org/10.1002/bit.10316

    Article  PubMed  Google Scholar 

  136. u Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123. https://doi.org/10.1021/bp060223e

  137. Marzialetti T, Valenzuela Olarte MB, Sievers C et al (2008) Dilute acid hydrolysis of loblolly pine: a comprehensive approach. Ind Eng Chem Res. https://doi.org/10.1021/ie800455f

    Article  Google Scholar 

  138. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131. https://doi.org/10.1016/J.BEJ.2009.04.020

    Article  CAS  Google Scholar 

  139. Kootstra AMJ, Mosier NS, Scott EL et al (2009) Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem Eng J 43:92–97. https://doi.org/10.1016/J.BEJ.2008.09.004

    Article  CAS  Google Scholar 

  140. Qin L, Liu Z-H, Li B-Z et al (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. https://doi.org/10.1016/J.BIORTECH.2012.02.134

    Article  CAS  PubMed  Google Scholar 

  141. Li M-F, Fan Y-M, Xu F et al (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crops Prod 32:551–559. https://doi.org/10.1016/J.INDCROP.2010.07.004

    Article  CAS  Google Scholar 

  142. Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259. https://doi.org/10.1016/J.BIORTECH.2011.02.075

    Article  CAS  PubMed  Google Scholar 

  143. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–38. https://doi.org/10.1385/ABAB:84-86:1-9

    Article  PubMed  Google Scholar 

  144. Chen H, Liu J, Chang X et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/J.FUPROC.2016.12.007

    Article  CAS  Google Scholar 

  145. Abdi N, Hamdache F, Belhocine D et al (2000) Enzymatic saccharification of solid residue of olive mill in a batch reactor. Biochem Eng J 6:177–183. https://doi.org/10.1016/S1369-703X(00)00085-1

    Article  CAS  PubMed  Google Scholar 

  146. McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727. https://doi.org/10.1016/J.BIORTECH.2010.03.116

    Article  CAS  PubMed  Google Scholar 

  147. Wu L, Arakane M, Ike M et al (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799. https://doi.org/10.1016/J.BIORTECH.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  148. Silverstein RA, Chen Y, Sharma-Shivappa RR et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011. https://doi.org/10.1016/J.BIORTECH.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  149. Chang VS, Nagwani M, Kim C-H, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Appl Biochem Biotechnol 94:01–28. https://doi.org/10.1385/ABAB:94:1:01

    Article  CAS  Google Scholar 

  150. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenerg 18:189–199. https://doi.org/10.1016/S0961-9534(99)00091-4

    Article  CAS  Google Scholar 

  151. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006. https://doi.org/10.1016/J.BIORTECH.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  152. Liang Y, Siddaramu T, Yesuf J, Sarkany N (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424. https://doi.org/10.1016/J.BIORTECH.2010.03.038

    Article  CAS  PubMed  Google Scholar 

  153. Reilly M, Dinsdale R, Guwy A (2015) Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresour Technol 189:258–265. https://doi.org/10.1016/J.BIORTECH.2015.03.150

    Article  CAS  PubMed  Google Scholar 

  154. Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol. https://doi.org/10.1007/BF02825962

    Article  Google Scholar 

  155. Yan Z, Li J, Chang S et al (2015) Lignin relocation contributed to the alkaline pretreatment efficiency of sweet sorghum bagasse. Fuel 158:152–158. https://doi.org/10.1016/J.FUEL.2015.05.029

    Article  CAS  Google Scholar 

  156. Xu J, Cheng JJ (2011) Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresour Technol 102:3861–3868. https://doi.org/10.1016/J.BIORTECH.2010.12.038

    Article  CAS  PubMed  Google Scholar 

  157. Iyer PV, Wu ZW, Kim SB, Lee YY (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol. https://doi.org/10.1007/BF02941693

    Article  Google Scholar 

  158. Foster BL, Dale BE, Doran-Peterson JB (2001) Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol 91–93:269–282. https://doi.org/10.1385/ABAB:91-93:1-9:269

    Article  PubMed  Google Scholar 

  159. Kim TH, Kim JS, Sunwoo C, Lee Y (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. https://doi.org/10.1016/S0960-8524(03)00097-X

    Article  CAS  PubMed  Google Scholar 

  160. Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-007-8084-0

    Article  PubMed  Google Scholar 

  161. Chen BY, Zhao BC, Li MF, et al (2017) Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Bioresour Technol 225: https://doi.org/10.1016/j.biortech.2016.11.062

  162. Kaur A, Kuhad RC (2019) Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment. Bioenergy Res 12: https://doi.org/10.1007/s12155-019-09988-3

  163. Pang B, Sun Z, Wang L, et al (2021) Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chem Eng J 419: https://doi.org/10.1016/j.cej.2021.129565

  164. Thring RW, Chornet E, Overend RP (1990) Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature. Biomass 23:289–305. https://doi.org/10.1016/0144-4565(90)90038-L

    Article  CAS  Google Scholar 

  165. Botello JI, Gilarranz MA, Rodríguez F, Oliet M (1999) Preliminary study on products distribution in alcohol pulping of Eucalyptus globulus. J Chem Technol Biotechnol. https://doi.org/10.1002/(SICI)1097-4660(199902)74:2%3c141::AID-JCTB1%3e3.0.CO;2-0

    Article  Google Scholar 

  166. Huijgen WJJ, Telysheva G, Arshanitsa A et al (2014) Characteristics of wheat straw lignins from ethanol-based organosolv treatment. Ind Crops Prod 59:85–95. https://doi.org/10.1016/J.INDCROP.2014.05.003

    Article  CAS  Google Scholar 

  167. Roque RMN, Baig MN, Leeke GA et al (2012) Study on sub-critical water mediated hydrolysis of Miscanthus a lignocellulosic biomass. Resour Conserv Recycl 59:43–46. https://doi.org/10.1016/J.RESCONREC.2011.06.007

    Article  Google Scholar 

  168. Muniz Kubota A, Kalnins R, Overton TW (2018) A biorefinery approach for fractionation of Miscanthus lignocellulose using subcritical water extraction and a modified organosolv process. Biomass Bioenerg 111:52–59. https://doi.org/10.1016/J.BIOMBIOE.2018.01.019

    Article  CAS  Google Scholar 

  169. Pan X, Arato C, Gilkes N et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng. https://doi.org/10.1002/bit.20453

    Article  PubMed  Google Scholar 

  170. Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456. https://doi.org/10.1016/J.BIORTECH.2013.11.038

    Article  CAS  PubMed  Google Scholar 

  171. Chen H, Zhao J, Hu T et al (2015) A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl Energy 150:224–232. https://doi.org/10.1016/J.APENERGY.2015.04.030

    Article  CAS  ADS  Google Scholar 

  172. Tan X, Zhang Q, Wang W et al (2019) Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel. https://doi.org/10.1016/j.fuel.2019.03.117

    Article  Google Scholar 

  173. Chen J, Tan X, Miao C, et al (2021) A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system. Bioresour Technol 342: https://doi.org/10.1016/j.biortech.2021.125963

  174. Chotirotsukon C, Raita M, Champreda V, Laosiripojana N (2019) Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111753

    Article  Google Scholar 

  175. Romaní A, Larramendi A, Yáñez R et al (2019) Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.02.040

    Article  Google Scholar 

  176. Weinwurm F, Turk T, Denner J et al (2017) Combined liquid hot water and ethanol organosolv treatment of wheat straw for extraction and reaction modeling. J Clean Prod 165:1473–1484. https://doi.org/10.1016/J.JCLEPRO.2017.06.215

    Article  CAS  Google Scholar 

  177. Matsakas L, Raghavendran V, Yakimenko O et al (2019) Lignin-first biomass fractionation using a hybrid organosolv – steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.11.055

    Article  PubMed  Google Scholar 

  178. Yuan W, Gong Z, Wang G et al (2018) Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour Technol 265:464–470. https://doi.org/10.1016/J.BIORTECH.2018.06.038

    Article  CAS  PubMed  Google Scholar 

  179. Li M-F, Yu P, Li S-X et al (2017) Sequential two-step fractionation of lignocellulose with formic acid organosolv followed by alkaline hydrogen peroxide under mild conditions to prepare easily saccharified cellulose and value-added lignin. Energy Convers Manag 148:1426–1437. https://doi.org/10.1016/J.ENCONMAN.2017.07.008

    Article  CAS  Google Scholar 

  180. Alio MA, Tugui OC, Vial C, Pons A (2019) Microwave-assisted organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.12.078

    Article  PubMed  Google Scholar 

  181. Tang C, Shan J, Chen Y et al (2017) Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresour Technol 232:222–228. https://doi.org/10.1016/J.BIORTECH.2017.02.041

    Article  CAS  PubMed  Google Scholar 

  182. Zhong L, Zhang X, Tang C et al (2018) Hydrazine hydrate and organosolv synergetic pretreatment of corn stover to enhance enzymatic saccharification and co-production of high-quality antioxidant lignin. Bioresour Technol 268:677–683. https://doi.org/10.1016/J.BIORTECH.2018.08.063

    Article  CAS  PubMed  Google Scholar 

  183. Meng X, Parikh A, Seemala B et al (2019) Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.09.130

    Article  PubMed  Google Scholar 

  184. Smith MD, Mostofian B, Cheng X et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem. https://doi.org/10.1039/c5gc01952d

    Article  Google Scholar 

  185. Meng X, Bhagia S, Wang Y, et al (2020) Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind Crops Prod 146: https://doi.org/10.1016/j.indcrop.2020.112144

  186. Thomas VA, Donohoe BS, Li M, et al (2017) Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol Biofuels 10: https://doi.org/10.1186/s13068-017-0937-3

  187. Jiang Z, He T, Li J, Hu C (2014) Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chem 16: https://doi.org/10.1039/c4gc00620h

  188. Yao F, Shen F, Wan X, Hu C (2020) High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis. Renew Sustain Energy Rev 132:.https://doi.org/10.1016/j.rser.2020.110107

  189. Nguyen TY, Cai CM, Kumar R, Wyman CE (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1704652114

    Article  PubMed  PubMed Central  Google Scholar 

  190. Nguyen TY, Cai CM, Osman O et al (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem. https://doi.org/10.1039/c5gc01977j

    Article  Google Scholar 

  191. Smith MD, Cai CM, Cheng X et al (2018) Temperature-dependent phase behaviour of tetrahydrofuran-water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass. Green Chem. https://doi.org/10.1039/c7gc03608f

    Article  Google Scholar 

  192. Meng X, Parikh A, Seemala B et al (2018) Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b01028

    Article  Google Scholar 

  193. Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. https://doi.org/10.1039/c3gc41214h

    Article  Google Scholar 

  194. Cai CM, Nagane N, Kumar R, Wyman CE (2014) Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. https://doi.org/10.1039/c4gc00747f

    Article  Google Scholar 

  195. Zhang H, Wu J, Zhang J, He J (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules. https://doi.org/10.1021/ma0505676

    Article  Google Scholar 

  196. Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140:407–421. https://doi.org/10.1007/s12010-007-9068-9

    Article  PubMed  ADS  Google Scholar 

  197. Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.04.070

    Article  PubMed  Google Scholar 

  198. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc. https://doi.org/10.1021/ja025790m

    Article  PubMed  Google Scholar 

  199. Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem. https://doi.org/10.1039/b711512a

    Article  Google Scholar 

  200. Amoah J, Ogura K, Schmetz Q et al (2019) Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2019.105283

    Article  Google Scholar 

  201. Fu D, Mazza G (2011) Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresour Technol. https://doi.org/10.1016/j.biortech.2011.06.023

    Article  PubMed  Google Scholar 

  202. Hu X, Cheng L, Gu Z et al (2018) Effects of ionic liquid/water mixture pretreatment on the composition, the structure and the enzymatic hydrolysis of corn stalk. Ind Crops Prod 122:142–147. https://doi.org/10.1016/J.INDCROP.2018.05.056

    Article  CAS  Google Scholar 

  203. Nguyen T-AD, Kim K-R, Han SJ et al (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438. https://doi.org/10.1016/J.BIORTECH.2010.04.053

    Article  CAS  PubMed  Google Scholar 

  204. Hu X, Xiao Y, Niu K et al (2013) Functional ionic liquids for hydrolysis of lignocellulose. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.04.061

    Article  PubMed  Google Scholar 

  205. Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.06.023

    Article  PubMed  Google Scholar 

  206. Nasirpour N, Mousavi SM (2018) RSM based optimization of PEG assisted ionic liquid pretreatment of sugarcane bagasse for enhanced bioethanol production: effect of process parameters. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2018.06.008

    Article  Google Scholar 

  207. Xu JK, Sun YC, Sun RC (2015) Synergistic effects of ionic liquid plus alkaline pretreatments on eucalyptus: lignin structure and cellulose hydrolysis. Process Biochem. https://doi.org/10.1016/j.procbio.2015.03.014

    Article  Google Scholar 

  208. Pang Z, Lyu W, Dong C et al (2016) High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose. Bioresour Technol. https://doi.org/10.1016/j.biortech.2016.04.095

    Article  PubMed  Google Scholar 

  209. Trinh LTP, Lee YJ, Park CS, Bae HJ (2019) Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.09.008

    Article  Google Scholar 

  210. Hou X, Wang Z, Sun J et al (2019) A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.10.003

    Article  PubMed  Google Scholar 

  211. Rigual V, Domínguez JC, Santos TM et al (2019) Autohydrolysis and microwave ionic liquid pretreatment of Pinus radiata: imaging visualization and analysis to understand enzymatic digestibility. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.03.068

    Article  Google Scholar 

  212. Sharma V, Nargotra P, Bajaj BK (2019) Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121319

    Article  PubMed  Google Scholar 

  213. Datta S, Holmes B, Park JI et al (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. https://doi.org/10.1039/b916564a

    Article  Google Scholar 

  214. Ouellet M, Datta S, Dibble DC et al (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem. https://doi.org/10.1039/c1gc15327g

    Article  Google Scholar 

  215. Sitepu IR, Enriquez LL, Nguyen V et al (2019) Ethanol production in switchgrass hydrolysate by ionic liquid-tolerant yeasts. Bioresour Technol Reports. https://doi.org/10.1016/j.biteb.2019.100275

    Article  Google Scholar 

  216. Ninomiya K, Soda H, Ogino C et al (2013) Effect of ionic liquid weight ratio on pretreatment of bamboo powder prior to enzymatic saccharification. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.10.097

    Article  PubMed  Google Scholar 

  217. An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol. https://doi.org/10.1016/j.biortech.2015.05.064

    Article  PubMed  Google Scholar 

  218. Ninomiya K, Utami ARI, Tsuge Y et al (2018) Pretreatment of bagasse with a minimum amount of cholinium ionic liquid for subsequent saccharification at high loading and co-fermentation for ethanol production. Chem Eng J. https://doi.org/10.1016/j.cej.2017.10.113

    Article  Google Scholar 

  219. Mohammadi M, Shafiei M, Abdolmaleki A et al (2019) A morpholinium ionic liquid for rice straw pretreatment to enhance ethanol production. Ind Crops Prod 139:111494. https://doi.org/10.1016/J.INDCROP.2019.111494

    Article  CAS  Google Scholar 

  220. Kahani S, Shafiei M, Abdolmaleki A, Karimi K (2017) Enhancement of ethanol production by novel morpholinium ionic liquids. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.09.008

    Article  Google Scholar 

  221. Abbott AP, Capper G, Davies DL, et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 70–71. https://doi.org/10.1039/b210714g

  222. Chen L, Yu Q, Wang Q et al (2019) A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose. https://doi.org/10.1007/s10570-018-2190-8

    Article  PubMed  Google Scholar 

  223. Xia Q, Liu Y, Meng J et al (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721. https://doi.org/10.1039/c8gc00900g

    Article  CAS  Google Scholar 

  224. Lou R, Ma R, Lin KT et al (2019) Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. ACS Sustain Chem Eng 7:10248–10256. https://doi.org/10.1021/acssuschemeng.8b05816

    Article  CAS  Google Scholar 

  225. Alvarez-Vasco C, Ma R, Quintero M, et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18: https://doi.org/10.1039/c6gc01007e

  226. Francisco M, Van Den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157. https://doi.org/10.1039/c2gc35660k

    Article  CAS  Google Scholar 

  227. Procentese A, Johnson E, Orr V et al (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36. https://doi.org/10.1016/j.biortech.2015.05.053

    Article  CAS  PubMed  Google Scholar 

  228. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23:9265–9275. https://doi.org/10.1007/s11356-015-4780-4

    Article  CAS  Google Scholar 

  229. Hou XD, Feng GJ, Ye M et al (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146. https://doi.org/10.1016/j.biortech.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  230. Yiin CL, Quitain AT, Yusup S et al (2018) Sustainable green pretreatment approach to biomass-to-energy conversion using natural hydro-low-transition-temperature mixtures. Bioresour Technol 261:361–369. https://doi.org/10.1016/j.biortech.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  231. Degam G (2017) Deep eutectic solvents synthesis, characterization and applications in pretreatment of lignocellulosic biomass. Dissertation, South Dakota State University

  232. Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  233. Procentese A, Raganati F, Olivieri G et al (2017) Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresour Technol 243:464–473. https://doi.org/10.1016/j.biortech.2017.06.143

    Article  CAS  PubMed  Google Scholar 

  234. Chen Z, Reznicek WD, Wan C (2018) Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour Technol 263:40–48. https://doi.org/10.1016/j.biortech.2018.04.058

    Article  CAS  PubMed  Google Scholar 

  235. Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238:684–689. https://doi.org/10.1016/j.biortech.2017.04.079

    Article  CAS  PubMed  Google Scholar 

  236. Zulkefli S, Abdulmalek E, Abdul Rahman MB (2017) Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew Energy 107:36–41. https://doi.org/10.1016/j.renene.2017.01.037

    Article  CAS  Google Scholar 

  237. Jablonský M, Škulcová A, Kamenská L et al (2015) Deep eutectic solvents: fractionation of wheat straw. BioResources 10:8039–8047. https://doi.org/10.15376/biores.10.4.8039-8047

    Article  CAS  Google Scholar 

  238. Hong S, Song Y, Yuan Y et al (2020) Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Ind Crops Prod 143:111913. https://doi.org/10.1016/j.indcrop.2019.111913

    Article  CAS  Google Scholar 

  239. Zhao Z, Chen X, Ali MF et al (2018) Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333. https://doi.org/10.1016/j.biortech.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  240. Su Y, Huang C, Lai C, Yong Q (2021) Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresour Technol 321: https://doi.org/10.1016/j.biortech.2020.124471

  241. Zhou X, Huang T, Liu J, et al (2021) Recyclable deep eutectic solvent coupling sodium hydroxide post-treatment for boosting woody/herbaceous biomass conversion at mild condition. Bioresour Technol 320: https://doi.org/10.1016/j.biortech.2020.124327

  242. Lee KM, Hong JY, Tey WY (2021) Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification. Cellulose 28: https://doi.org/10.1007/s10570-020-03598-5

  243. Sharma V, Nargotra P, Sharma S, Bajaj BK (2021) Efficacy and functional mechanisms of a novel combinatorial pretreatment approach based on deep eutectic solvent and ultrasonic waves for bioconversion of sugarcane bagasse. Renew Energy 163: https://doi.org/10.1016/j.renene.2020.10.101

  244. Tnah SK, Wu TY, Ting DCC, et al (2022) Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis. Renew Energy 182: https://doi.org/10.1016/j.renene.2021.09.068

  245. Liu S (2015) A synergetic pretreatment technology for woody biomass conversion. Appl Energy 144:114–128. https://doi.org/10.1016/j.apenergy.2015.02.021

    Article  CAS  ADS  Google Scholar 

  246. Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63. https://doi.org/10.1016/J.SUPFLU.2008.05.003

    Article  CAS  Google Scholar 

  247. Ingram T, Rogalinski T, Bockemühl V et al (2009) Semi-continuous liquid hot water pretreatment of rye straw. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2008.10.023

    Article  Google Scholar 

  248. Pérez JA, Ballesteros I, Ballesteros M et al (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel. https://doi.org/10.1016/j.fuel.2008.06.009

    Article  Google Scholar 

  249. Cardona E, Llano B, Peñuela M et al (2018) Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy. https://doi.org/10.1016/j.energy.2018.07.045

    Article  Google Scholar 

  250. Pangsang N, Rattanapan U, Thanapimmetha A et al (2019) Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production. Energy Rep. https://doi.org/10.1016/j.egyr.2019.02.008

    Article  Google Scholar 

  251. Goh CS, Tan HT, Lee KT, Mohamed AR (2010) Optimizing ethanolic hot compressed water (EHCW) cooking as a pretreatment to glucose recovery for the production of fuel ethanol from oil palm frond (OPF). Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2010.03.029

    Article  Google Scholar 

  252. Weiqi W, Shubin W, Liguo L (2013) Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.08.130

    Article  PubMed  Google Scholar 

  253. Tian D, Shen F, Yang G et al (2019) Liquid hot water extraction followed by mechanical extrusion as a chemical-free pretreatment approach for cellulosic ethanol production from rigid hardwood. Fuel. https://doi.org/10.1016/j.fuel.2019.04.155

    Article  Google Scholar 

  254. Liu J, Li R, Shuai L et al (2017) Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Ind Crops Prod 107:139–148. https://doi.org/10.1016/J.INDCROP.2017.05.035

    Article  CAS  Google Scholar 

  255. Yu Q, Zhuang X, Lv S et al (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.11.099

    Article  PubMed  Google Scholar 

  256. Hongzhang C, Liying L (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98:666–676. https://doi.org/10.1016/J.BIORTECH.2006.02.029

    Article  CAS  PubMed  Google Scholar 

  257. Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12. https://doi.org/10.1016/J.BIORTECH.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  258. Zhao X, Moates GK, Wilson DR et al (2015) Steam explosion pretreatment and enzymatic saccharification of duckweed (Lemna minor) biomass. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.11.003

    Article  Google Scholar 

  259. Chen WH, Tsai CC, Lin CF et al (2013) Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system. Bioresour Technol. https://doi.org/10.1016/j.biortech.2012.10.111

    Article  PubMed  Google Scholar 

  260. Wang W, Ling H, Zhao H (2015) Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification. Process Biochem. https://doi.org/10.1016/j.procbio.2015.06.001

    Article  Google Scholar 

  261. Niemi P, Pihlajaniemi V, Rinne M, Siika-aho M (2017) Production of sugars from grass silage after steam explosion or soaking in aqueous ammonia. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2017.01.022

    Article  Google Scholar 

  262. Verardi A, Blasi A, Marino T et al (2018) Effect of steam-pretreatment combined with hydrogen peroxide on lignocellulosic agricultural wastes for bioethanol production: analysis of derived sugars and other by-products. J Energy Chem. https://doi.org/10.1016/j.jechem.2017.11.007

    Article  Google Scholar 

  263. He L, Wang C, Shi H et al (2019) Combination of steam explosion pretreatment and anaerobic alkalization treatment to improve enzymatic hydrolysis of Hippophae rhamnoides. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121693

    Article  PubMed  Google Scholar 

  264. Mihiretu GT, Chimphango AF, Görgens JF (2019) Steam explosion pretreatment of alkali-impregnated lignocelluloses for hemicelluloses extraction and improved digestibility. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122121

    Article  PubMed  Google Scholar 

  265. Martín C, Wu G, Wang Z et al (2018) Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.04.074

    Article  PubMed  Google Scholar 

  266. Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 98–100:23–35. https://doi.org/10.1385/ABAB:98-100:1-9:23

    Article  Google Scholar 

  267. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol. https://doi.org/10.1016/j.biortech.2005.01.016

    Article  PubMed  Google Scholar 

  268. Lee JM, Jameel H, Venditti RA (2010) A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:5449–5458. https://doi.org/10.1016/J.BIORTECH.2010.02.055

    Article  CAS  PubMed  Google Scholar 

  269. Abdul PM, Jahim JM, Harun S et al (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresour Technol. https://doi.org/10.1016/j.biortech.2016.02.135

    Article  PubMed  Google Scholar 

  270. Chundawat SPS, Vismeh R, Sharma LN et al (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.06.027

    Article  PubMed  Google Scholar 

  271. Zhao C, Shao Q, Ma Z et al (2016) Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2015.12.018

    Article  Google Scholar 

  272. Zhao C, Qiao X, Cao Y, Shao Q (2017) Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel. https://doi.org/10.1016/j.fuel.2017.05.073

    Article  Google Scholar 

  273. Rojas-Sossa JP, Zhong Y, Valenti F et al (2019) Effects of ammonia fiber expansion (AFEX) treated corn stover on anaerobic microbes and corresponding digestion performance. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2019.105263

    Article  Google Scholar 

  274. Baral NR, Shah A (2017) Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.02.068

    Article  PubMed  Google Scholar 

  275. Ritter D, Campbell A (1991) Supercritical carbon dioxide extraction of southern pine and ponderosa pine. Wood fiber Sci 23:98–113

  276. Zheng Y, Lin HM, Wen J et al (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett. https://doi.org/10.1007/BF00129015

    Article  Google Scholar 

  277. Zheng Y, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog. https://doi.org/10.1021/bp980087g

    Article  PubMed  Google Scholar 

  278. Narayanaswamy N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000. https://doi.org/10.1016/J.BIORTECH.2011.04.052

    Article  CAS  PubMed  Google Scholar 

  279. Zhao M, Xu Q, Li G, et al (2019) Pretreatment of agricultural residues by supercritical CO 2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem. https://doi.org/10.1016/j.jechem.2018.05.003

  280. Gao M, Xu F, Li S et al (2010) Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst Eng. https://doi.org/10.1016/j.biosystemseng.2010.05.011

    Article  Google Scholar 

  281. Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144. https://doi.org/10.1016/S0960-8524(00)00147-4

    Article  CAS  PubMed  Google Scholar 

  282. Alinia R, Zabihi S, Esmaeilzadeh F, Kalajahi JF (2010) Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosyst Eng. https://doi.org/10.1016/j.biosystemseng.2010.07.002

    Article  Google Scholar 

  283. Ji Q, Jiang H, Yu X, et al (2020) Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system. Renew Energy 162: https://doi.org/10.1016/j.renene.2020.07.123

  284. Silveira MHL, Vanelli BA, Corazza ML, Ramos LP (2015) Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 192: https://doi.org/10.1016/j.biortech.2015.05.044

  285. Okano K, Kitagawa M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim Feed Sci Technol 120:235–243. https://doi.org/10.1016/J.ANIFEEDSCI.2005.02.023

    Article  Google Scholar 

  286. Akin DE, Rigsby LL, Sethuraman A et al (1995) Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl Environ Microbiol 61:1591–1598. https://doi.org/10.1128/aem.61.4.1591-1598.1995

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  287. ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3414. https://doi.org/10.1021/cr000115l

    Article  CAS  PubMed  Google Scholar 

  288. Rabinovich ML, Bolobova A V., Vasil’chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl. Biochem. Microbiol.

  289. Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Eur J Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00504744

    Article  Google Scholar 

  290. Lee J-W, Gwak K-S, Park J-Y et al (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45:485–91

    CAS  PubMed  Google Scholar 

  291. Bak JS, Kim MD, Choi IG, Kim KH (2010) Biological pretreatment of rice straw by fermenting with Dichomitus squalens. N Biotechnol. https://doi.org/10.1016/j.nbt.2010.02.021

    Article  PubMed  Google Scholar 

  292. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564. https://doi.org/10.1016/J.BIORTECH.2007.11.069

    Article  CAS  PubMed  Google Scholar 

  293. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2008.04.016

    Article  Google Scholar 

  294. Yu H, Zhang X, Song L et al (2010) Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci Bioeng 110:660–664. https://doi.org/10.1016/J.JBIOSC.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  295. Alexandropoulou M, Antonopoulou G, Fragkou E et al (2017) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manage. https://doi.org/10.1016/j.jenvman.2016.04.006

    Article  PubMed  Google Scholar 

  296. Noor Arbaain EN, Bahrin EK, Noor NM et al (2019) Chemical-free pretreatment of unwashed oil palm empty fruit bunch by using locally isolated fungus (Schizophyllum commune ENN1) for delignification. Food Bioprod Process. https://doi.org/10.1016/j.fbp.2019.09.001

    Article  Google Scholar 

  297. Guragain YN, Wang D, Vadlani P V. (2016) Appropriate biorefining strategies for multiple feedstocks: critical evaluation for pretreatment methods, and hydrolysis with high solids loading. Renew Energy 96: https://doi.org/10.1016/j.renene.2016.04.099

  298. Hou J, Zhang X, Zhang S et al (2022) Improvement of bioethanol production using a new fermentation system: the process analysis and micro-mechanisms study. Process Saf Environ Prot 162:837–845. https://doi.org/10.1016/j.psep.2022.04.061

    Article  CAS  Google Scholar 

  299. Qin L, Liu ZH, Jin M, et al (2013) High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresour Technol 146: https://doi.org/10.1016/j.biortech.2013.07.099

  300. Zhang D, Ong YL, Li Z, Wu JC (2013) Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochem Eng J 72: https://doi.org/10.1016/j.bej.2013.01.003

  301. Liu K, Atiyeh HK, Pardo-Planas O, et al (2015) Butanol production from hydrothermolysis-pretreated switchgrass: quantification of inhibitors and detoxification of hydrolyzate. Bioresour Technol 189: https://doi.org/10.1016/j.biortech.2015.04.018

  302. Travaini R, Barrado E, Bolado S (2016) Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse. Bioresour Technol 218: https://doi.org/10.1016/j.biortech.2016.07.028

  303. Wang J, Gao Q, Zhang H, Bao J (2016) Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresour Technol 218: https://doi.org/10.1016/j.biortech.2016.06.130

  304. Gao H, Wang Y, Yang Q, et al (2021) Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renew Energy 175: https://doi.org/10.1016/j.renene.2021.05.016

  305. Liu Y, Yan Z, He Q, et al (2021) Bacterial delignification promotes the pretreatment of rice straw by ionic liquid at high biomass loading. Process Biochem 111: https://doi.org/10.1016/j.procbio.2021.08.026

  306. Wei HL, Bu J, Zhou SS, et al (2021) A facile ionic liquid and p-toluenesulfonic acid pretreatment of herb residues: enzymatic hydrolysis and lignin valorization. Chem Eng J 419: https://doi.org/10.1016/j.cej.2021.129616

  307. Wang X, Cao L, Lewis R, et al (2020) Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors. Renew Energy 162:. https://doi.org/10.1016/j.renene.2020.09.118

Download references

Acknowledgements

The authors are thankful for access to the state-of-the-art research infrastructure in the Clean Energy Technologies Research Institute (CETRI). The authors are grateful for their support.

Funding

The financial support was provided by Mitacs Accelerate (IT29592), Natural Sciences and Engineering Research Council of Canada (NSERC DG: RGPIN-2018–03955), Canada Foundation for Innovation (CFI JELF: 37758), and the Vice-President (Research) Discretionary Fund at the University of Regina.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hussameldin Ibrahim; methodology: Ishag Alawad, Hussameldin Ibrahim; software: Ishag Alawad; validation: Ishag Alawad, Hussameldin Ibrahim; formal analysis: Ishag Alawad; investigation: Ishag Alawad; resources: Hussameldin Ibrahim; data curation: Ishag Alawad; writing—original draft preparation: Ishag Alawad; writing—review and editing: Hussameldin Ibrahim; visualization: Ishag Alawad; supervision: Hussameldin Ibrahim; project administration: Hussameldin Ibrahim; funding acquisition: Hussameldin Ibrahim. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hussameldin Ibrahim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclaimer

The views expressed herein are those of the writers and not necessarily those of our research and funding partners.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawad, I., Ibrahim, H. Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends. Biomass Conv. Bioref. 14, 6155–6183 (2024). https://doi.org/10.1007/s13399-022-02981-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02981-5

Keywords

Navigation