Skip to main content

Advertisement

Log in

Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Chitin (CT) and its deacetylated derivative, chitosan (CS), are globally available in large quantities mostly found in marine and freshwater ecosystems as a waste generated from the exoskeletons of seafood. Thus, the motivation of present review is to identify the global waste generation of CT/CS and its evaluation as a potential feedstock for various applications. The potential sources of CT, extraction strategies for CS, and various properties of CS with enzymatic degradation pathways are elucidated. The major challenges (such as management, degradability, and inhibitors production) associated with conversion of polysaccharides rich substrates (CT/CS) into biofuels are covered. The pretreatments (such as mechanical, physical, chemical, and biological) to improve the performance of CT/CS to biofuels is deliberated. The addition of CS in the mono-anaerobic digestion improved the biogas production. However, approaches such as co-digestion or/and biochar addition can decrease the level of inhibitors and enhance the biogas production. The CT can be used also for bioethanol production by fermentative microbes (such as Saccharomyces cerevisiae and Candida albicans). The use of saccharide rich substrates (such as seafood having CT) in AD and fermentation with the applications of pretreatments could be a potential approach to enhance biofuels recovery. The generation of bioenergy products would decrease the sea waste and protect environmental health.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ya-Ling H, Yung-Hsiang T (2020) Extraction of chitosan fromsquid pen waste by high hydrostatic pressure: effects on physicochemical properties and antioxidant activities of chitosan. Int J BioMacromol 160:677–687. https://doi.org/10.1016/j.ijbiomac.2020.05.252

    Article  Google Scholar 

  2. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras CA (2021) An overview of its properties and applications. Polym 13(19):3256. https://doi.org/10.3390/polym13193256

    Article  Google Scholar 

  3. Klongthong W, Muangsin V, Gowanit C, Muangsin N (2020) Chitosan biomedical applications for the treatment of viral disease: a data mining model using bibliometric predictive intelligence. J Chem. https://doi.org/10.1155/2020/6612034

    Article  Google Scholar 

  4. Rahman MM, Shahruzzaman M, Islam MS, Khan MN, Haque P (2019) Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration. J Polym 39(2):134–142. https://doi.org/10.1515/polyeng-2018-0103

    Article  Google Scholar 

  5. Moeinia A, Pedram P, Makvandi P, Malinconico M, Giovanna DG (2020) Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr 233:115839. https://doi.org/10.1016/j.carbpol.2020.115839

    Article  Google Scholar 

  6. Yin M, Chen H (2022) Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. Bioresour Technol 344:126182. https://doi.org/10.1016/j.biortech.2021.126182

    Article  Google Scholar 

  7. Sherin M, Joseph SK, Paranthaman R, Moses JA, Anandharamakrishnan C (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr Pol Technol Appl 2:100036. https://doi.org/10.1016/j.carpta.2021.100036

    Article  Google Scholar 

  8. Amine R, Tarek C, Hassane E, Noureddine EH, Chemical KO (2021) Proprieties of biopolymers (chitin/chitosan) and their synergic effects with endophytic Bacillus species: unlimited applications in agriculture. Molecules 26(4):1117. https://doi.org/10.3390/molecules26041117

    Article  Google Scholar 

  9. Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Ribelles JG et al (2012) Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polym 31(8):1062–1069. https://doi.org/10.1016/j.polymertesting.2012.07.010

    Article  Google Scholar 

  10. Thomas Maschmeyer RLaMS (2020) Upgrading of marine (fish and crustaceans) biowaste for high added value molecules and bio(nano)-materials. Chem Soc Rev. https://doi.org/10.1039/C9CS00653b

    Article  Google Scholar 

  11. Garcia-Valdez O, Champagne P, Cunningham MF (2018) Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 76:151–173. https://doi.org/10.1016/j.progpolymsci.2017.08.001

    Article  Google Scholar 

  12. Soudararajan A. (2015) Recent research in the applications of chitin, chitosan and oligosaccharides. Green polymers and environmental pollution control; Khalaf, MN, Ed; Apple Academic Press: Palm Bay, Fl, USA. https://doi.org/10.1201/b19772-11

  13. Ali G, Ling Z, Saif I, Usman M, Jalalah M, Harraz FA et al (2021) Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion. Environ Pollut 278:116801. https://doi.org/10.1016/j.envpol.2021.116801

    Article  Google Scholar 

  14. Cristina Casadidio DVP, Gigliobianco MR, Deng S, Martino RCAPD (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17(6):369. https://doi.org/10.3390/md17060369

    Article  Google Scholar 

  15. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2019) Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. Int J Biol Macromol 150:1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113

    Article  Google Scholar 

  16. Youn DK, No HK, Prinyawiwatkul W (2013) Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int J Food Sci Technol 48(3):571–577. https://doi.org/10.1111/ijfs.12001

    Article  Google Scholar 

  17. Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers Applied biochemistry and biotechnology. Appl. Biochem. Biotechnol 181(4):1314–1337. https://doi.org/10.1007/s12010-016-2286-2

    Article  Google Scholar 

  18. Lichtfouse E, Morin-Crini N, Fourmentin M, Zemmouri H, Do Nascimento IOC, Queiroz LM et al (2019) Chitosan for direct bioflocculation processes. Sustain Agri Rev 36:335–380. https://doi.org/10.1007/978-3-030-16581-9_9

    Article  Google Scholar 

  19. Jin W, Xu X, Yang F (2018) Application of rumen microorganisms for enhancing biogas production of corn straw and livestock manure in a pilot-scale anaerobic digestion system: performance and microbial community analysis. Energies 11(4):920. https://doi.org/10.3390/en11040920

    Article  Google Scholar 

  20. Wendland J, Schaub Y, Walther A (2009) N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Appl Environ Microbiol 75(18):5840–5845. https://doi.org/10.1128/AEM.00053-09

    Article  Google Scholar 

  21. Aranda-Martineza A, Ortizb MÁN, Garcíaa ISA, Zavala-Gonzaleza EA, Lopez-Llorca LV (2017) Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 204:30–39. https://doi.org/10.1016/j.micres.2017.07.009

    Article  Google Scholar 

  22. Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158(1):26–34. https://doi.org/10.1099/mic.0.052613-0

    Article  Google Scholar 

  23. Halwart M. (2019) FAN coming of age! FAO Aquaculture Newsletter. 60: II-III

  24. Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S (2019) Marine polysaccharides in pharmaceutical applications: fucoidan and chitosan as key players in the drug delivery match field. Mar Drugs 17(12):654. https://doi.org/10.3390/md17120654

    Article  Google Scholar 

  25. Huang L, Bi S, Pang J, Sun M, Feng C, Chen X (2020) Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. Int J Biol Macromol 147:931–936. https://doi.org/10.1016/j.ijbiomac.2019.10.059

    Article  Google Scholar 

  26. Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB et al (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Vet World 10(2):170–175. https://doi.org/10.14202/vetworld.2017.170-175

    Article  Google Scholar 

  27. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources Structure properties and applications. Mar Drugs 13(3):1133–1174. https://doi.org/10.3390/md13031133

    Article  Google Scholar 

  28. Sanjaya Lama KM, Karki TB, Foubert I, Henderson RK, Vandamme D (2016) Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Bioresour Technol 220:464–470. https://doi.org/10.1016/j.biortech.2016.08.080

    Article  Google Scholar 

  29. Balu Arasukumar GP, Gunalan B, Moovendhan M (2019) Chemical composition, structural features, surfacemorphology and bioactivities of chitosan derivatives fromlobster (Thenus unimaculatus)shells. Int J Biol Macromol 135:1237–1245. https://doi.org/10.1016/j.ijbiomac.2019.06.033

    Article  Google Scholar 

  30. Gatto M, Ochi D, Yoshida CMP, da Silva FC (2019) Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr Polym 210:56–63. https://doi.org/10.1016/j.carbpol.2019.01.053

    Article  Google Scholar 

  31. Al-Abdulkarim BO, Osman MS, El-Nadeef MA (2013) Determination of chemical composition, and storage on dried fermented goat milk product (Oggtt). J Saudi Soc Agric Sci 12(2):161–166. https://doi.org/10.1016/j.jssas.2012.11.003

    Article  Google Scholar 

  32. Murat Kaya OS, Baran T, Turkes T (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool. https://doi.org/10.1186/s12983-014-0059-8

    Article  Google Scholar 

  33. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar N (2020) Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. Int J Biol Macromol 150:1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113

    Article  Google Scholar 

  34. Ghormade V, Pathan E, Deshpande M (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421. https://doi.org/10.1016/j.ijbiomac.2017.01.112

    Article  Google Scholar 

  35. Wan J, Jiang F, Xu Q, Chen D, Yu B, Huang Z et al (2017) New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Adv 7(16):9669–9679. https://doi.org/10.1039/C7RA00142H

    Article  Google Scholar 

  36. Rahman MA, Halfar J (2014) First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Sci Rep 4(1):1–11. https://doi.org/10.1038/srep06162

    Article  Google Scholar 

  37. Nahar P, Yadav P, Kulye M, Hadapad A, Hassani M, Tuort U et al (2004) Evaluation of indigenous fungal isolates, Metarhizium anisopliae M34412 Beauveria bassiana B3301 and Nonluraea rileyi N812 for the control of Helicoverpa armigera (Hubner) in pigeonpea field. Biol Control 18(1):1–8. https://doi.org/10.18311/jbc/2004/4036

    Article  Google Scholar 

  38. Satari B, Karimi K, Taherzadeh MJ, Zamani A (2016) Co-production of fungal biomass derived constituents and ethanol from citrus wastes free sugars without auxiliary nutrients in airlift bioreactor. Int J Mol Sci 17(3):302. https://doi.org/10.3390/ijms17030302

    Article  Google Scholar 

  39. Zhang S (2013) Hydroxyapatite coatings for biomedical applications. CRC Press. https://doi.org/10.1201/b14803

    Article  Google Scholar 

  40. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179. https://doi.org/10.1016/j.foodhyd.2010.03.003

    Article  Google Scholar 

  41. van der Gronde T, Hartog A, van Hees C, Pellikaan H, Pieters T (2016) Systematic review of the mechanisms and evidence behind the hypocholesterolaemic effects of HPMC, pectin and chitosan in animal trials. Food Chem 199:746–759. https://doi.org/10.1016/j.foodchem.2015.12.050

    Article  Google Scholar 

  42. Elieh-Ali-Komi D, Hamblin MR. (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. 4(3):411–427. https://www.researchgate.net/publication/301282400

  43. Abhinaya M, Parthiban R, Kumar PS, Vo D-VN (2021) A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ Res 196:110996. https://doi.org/10.1016/j.envres.2021.110996

    Article  Google Scholar 

  44. Md. Minhajul Islama MS, Shanta Biswasa, Md. Nurus Sakiba,, Rashida TU. (2020) Chitosan based bioactive materials in tissue engineering applications. A review. Bioact Mater. 5(1):164–183https://doi.org/10.1016/j.bioactmat.2020.01.012

  45. Tuyishime Philibert BHL, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181(4):1314–1337. https://doi.org/10.1007/s12010-016-2286-2

    Article  Google Scholar 

  46. Maleki G, Woltering EJ, Mozafari MR (2022) Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 120:88–99. https://doi.org/10.1016/j.tifs.2022.01.001

    Article  Google Scholar 

  47. Mujtaba M, Morsi RE, Kerch G, Elsabee MZ, Kaya M, Labidi J et al (2019) Current advancements in chitosan-based film production for food technology; a review. Int J Biol Macromol 121:889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

    Article  Google Scholar 

  48. Duan C, Meng X, Meng J, Khan MIH, Dai L, Khan A et al (2019) Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J Bioresour Bioprod 4(1):11–21. https://doi.org/10.21967/jbb.v4i1.189

    Article  Google Scholar 

  49. Tzaneva D, Simitchiev A, Petkova N, Nenov V, Stoyanova A, Denev P (2017) Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. J Appl Pharm Sci 7(10):70–78. https://doi.org/10.7324/JAPS.2017.71010

    Article  Google Scholar 

  50. Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW (2022) Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 282:119100. https://doi.org/10.1016/j.carbpol.2022.119100

    Article  Google Scholar 

  51. Benediktsdóttir BE, Baldursson Ó, Másson M (2014) Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: from synthesis to in vitro application. J Control Release 173:18–31. https://doi.org/10.1016/j.jconrel.2013.10.022

    Article  Google Scholar 

  52. Gao Y, Wu Y (2022) Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. Int J Biol Macromol 203:379–388. https://doi.org/10.1016/j.ijbiomac.2022.01.162

    Article  Google Scholar 

  53. Costa-Fernandez S, Matos JKR, Scheunemann GS, Salata GC, Chorilli M, Watanabe I-S et al (2021) Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol 183:668–680. https://doi.org/10.1016/j.ijbiomac.2021.04.168

    Article  Google Scholar 

  54. Othman SI, Alturki AM, Abu-Taweel GM, Altoom NG, Allam AA, Abdelmonem R (2021) Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 190:417–432. https://doi.org/10.1016/j.ijbiomac.2021.08.154

    Article  Google Scholar 

  55. Liu Z, Wang K, Peng X, Zhang L (2022) Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair. Eur Polym J 166:110979. https://doi.org/10.1016/j.eurpolymj.2021.110979

    Article  Google Scholar 

  56. Dowling MB, Kumar R, Keibler MA, Hess JR, Bochicchio GV, Raghavan SR (2011) A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials 32(13):3351–3357. https://doi.org/10.1016/j.biomaterials.2010.12.033

    Article  Google Scholar 

  57. Kim S-K (2013) Chitin and chitosan derivatives: advances in drug discovery and developments. CRC Press

    Book  Google Scholar 

  58. Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S (2021) Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—a comprehensive review. Carbohydr Polym 273:118604. https://doi.org/10.1016/j.carbpol.2021.118604

    Article  Google Scholar 

  59. Bobu E, Nicu R, Lupei M, Ciolacu F, Desbrieres J (2011) Synthesis and characterization of n-alkyl chitosan for papermaking applications. Cellul Chem Technol 45(9):625

    Google Scholar 

  60. Chungsiriporn J, Khunthongkaew P, Wongnoipla Y, Sopajarn A, Karrila S, Iewkittayakorn J (2022) Fibrous packaging paper made of oil palm fiber with beeswax-chitosan solution to improve water resistance. Ind Crops Prod 177:104. https://doi.org/10.1016/j.indcrop.2022.114541

    Article  Google Scholar 

  61. Qu B, Luo Y (2020) Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors—a review. Int J Biol Macromol 152:437–448. https://doi.org/10.1016/j.ijbiomac.2020.02.240

    Article  Google Scholar 

  62. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çelik A (2012) Removal of lead (II) ions from aqueous solution by using crosslinked chitosan-clay beads. Desalination Water Treat 39(1–3):76–82. https://doi.org/10.1080/19443994.2012.669161

    Article  Google Scholar 

  63. Hsan N, Dutta PK, Kumar S, Das N, Koh J (2020) Capture and chemical fixation of carbon dioxide by chitosan grafted multi-walled carbon nanotubes. J CO2 Util 41:101237

    Article  Google Scholar 

  64. Santos VP, Maia P, Alencar NdS, Farias L, Andrade RFS, Souza D et al (2019) Recovery of chitin and chitosan from shrimp waste with microwave technique and versatile application. Arq Inst Biol 86:1–7. https://doi.org/10.1590/1808-1657000982018

    Article  Google Scholar 

  65. Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35(1):44–61. https://doi.org/10.3109/07388551.2013.798256

    Article  Google Scholar 

  66. Mohan K, Ganesan AR, Ezhilarasi PN, Kondamareddy KK, Rajan DK, Sathishkumar P et al (2022) Green and eco-friendly approaches for the extraction of chitin and chitosan: a review. Carbohydr 287:119349. https://doi.org/10.1016/j.carbpol.2022.119349

    Article  Google Scholar 

  67. Castro R, Guerrero-Legarreta I, Bórquez R (2018) Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnol 20:e00287. https://doi.org/10.1016/j.btre.2018.e00287

    Article  Google Scholar 

  68. Knidri HE, Dahmani J, Addaou A, Laajeb A, Lahsini A (2019) Rapid and efficient extraction of chitin and chitosan for scale-up production: effect of process parameters on deacetylation degree and molecular weight. Int J Biol Macromol 139:1092–1102. https://doi.org/10.1016/j.ijbiomac.2019.08.079

    Article  Google Scholar 

  69. Apriyanti DT, Susanto H, Rokhati N (2018) Influence of microwave irradiation on extraction of chitosan from shrimp shell waste. Reaktor 18(1):45–50. https://doi.org/10.14710/reaktor.18.1.45-50

    Article  Google Scholar 

  70. Hou F, Ma X, Fan L, Wang D, Ding T, Ye X et al (2020) Enhancement of chitin suspension hydrolysis by a combination of ultrasound and chitinase. Carbohydr 231:115669. https://doi.org/10.1016/j.carbpol.2019.115669

    Article  Google Scholar 

  71. Saravana PS, Ho TC, Chae S-J, Cho Y-J, Park J-S, Lee H-J et al (2018) Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr 195:622–630. https://doi.org/10.1016/j.carbpol.2018.05.018

    Article  Google Scholar 

  72. Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matboulia M et al (2019) Recent progress in biomedical applications of chitosan and its nano composites in aquaculture: A review. Res Vet Sci 126:68–82. https://doi.org/10.1016/j.rvsc.2019.08.005

    Article  Google Scholar 

  73. Ibrahim M, Osman O, Mahmoud AA (2011) Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach. J Comput Theor Nanosci 8(1):117–123. https://doi.org/10.1166/jctn.2011.1668

    Article  Google Scholar 

  74. Leedy MR, Martin HJ, Norowski PA, Jennings JA, Haggard WO, Bumgardner JD (2011) Use of chitosan as a bioactive implant coating for bone-implant applications. Chitosan for biomaterials II:129–165. https://doi.org/10.1007/978-3-642-24061-4

    Article  Google Scholar 

  75. Dey S, Al-Amin M, Rashid T, Ashaduzzaman M, Shamsuddin S (2016) pH induced fabrication of kaolinite-chitosan biocomposite. Int Lett Chem Phys Astron 68:1–9. https://doi.org/10.18052/www.scipress.com/ILCPA.68.1

    Article  Google Scholar 

  76. Rashid TU, Shamsuddin SM, Khan MA, Rahman MM (2014) Evaluation of fat binding capacity of gamma irradiated chitosan extracted from prawn shell. Soft Mater 12(3):262–267. https://doi.org/10.1080/1539445X.2014.880720

    Article  Google Scholar 

  77. Islam N, Dmour I, Taha MO (2019) Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 5(5):e01684. https://doi.org/10.1016/j.heliyon.2019.e01684

    Article  Google Scholar 

  78. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. https://doi.org/10.1155/2015/821279

    Article  Google Scholar 

  79. Rastyannikova E. (2015) Fisheries and Aquaculture of the BRICS in the World Economy. Bocтoчнaя aнaлитикa

  80. Weng H-L, Lee D-J (2015) Performance of sulfate reducing bacteria-microbial fuel cells: reproducibility. J Taiwan Institute Chem Engine 56:148–153. https://doi.org/10.1016/j.jtice.2015.04.028

    Article  Google Scholar 

  81. Usman M, Salama E-S, Arif M, Jeon B-H, Li X (2020) Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion. Renew Sust Energ Rev 131:110032. https://doi.org/10.1016/j.rser.2020.110032

    Article  Google Scholar 

  82. Liu Y, Xing R, Yang H, Liu S, Qin Y, Li K et al (2020) Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. Int J Biol Macromol 148:424–433. https://doi.org/10.1016/j.ijbiomac.2020.01.124

    Article  Google Scholar 

  83. Sarker S, Lamb JJ, Hjelme DR, Lien KM (2019) A review of the role of critical parameters in the design and operation of biogas production plants. Appl Sci 9(9):1915. https://doi.org/10.3390/app9091915

    Article  Google Scholar 

  84. de Alvarenga ES (2011) Characterization and properties of chitosan. Biotechnol biopoly 91:48–53. https://doi.org/10.5772/17020

    Article  Google Scholar 

  85. Rasapoor M, Young B, Brar R, Sarmah A, Zhuang WQ, Baroutian S (2020) Recognizing the challenges of anaerobic digestion: critical steps toward improving biogas generation. Fuel 261:116497. https://doi.org/10.1016/j.fuel.2019.116497

    Article  Google Scholar 

  86. Jaime MD, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE et al (2012) Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics. BMC Genom 13(1):267. https://doi.org/10.1186/1471-2164-13-267

    Article  Google Scholar 

  87. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G et al (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397. https://doi.org/10.1016/j.biortech.2015.09.007

    Article  Google Scholar 

  88. Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X et al (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128. https://doi.org/10.1016/j.rser.2019.01.048

    Article  Google Scholar 

  89. Bochmann LFRMaG. (2014) Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy England

  90. Skiadas IV, Gavala HN, Lu J, Ahring BK (2005) Thermal pre-treatment of primary and secondary sludge at 70 C prior to anaerobic digestion. Water Sci Technol 52(1–2):161–166. https://doi.org/10.2166/wst.2005.0512

    Article  Google Scholar 

  91. Elliott A, Mahmood T (2012) Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge. Water Environ Res 84(6):497–505. https://doi.org/10.2175/106143012x13347678384602

    Article  Google Scholar 

  92. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46(2):557–565. https://doi.org/10.1016/j.procbio.2010.10.010

    Article  Google Scholar 

  93. Bougrier C, Albasi C, Delgenès J-P, Carrère H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process 45(8):711–718. https://doi.org/10.1016/j.cep.2006.02.005

    Article  Google Scholar 

  94. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  Google Scholar 

  95. Gabhane J, William SP, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35(1):96–102. https://doi.org/10.1016/j.biombioe.2010.08.026

    Article  Google Scholar 

  96. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  97. Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77(3):656–661. https://doi.org/10.1016/j.carbpol.2009.02.008

    Article  Google Scholar 

  98. Moghe A, Hufenus R, Hudson S, Gupta B (2009) Effect of the addition of a fugitive salt on electrospinnability of poly (ɛ-caprolactone). Polymer 50(14):3311–3318. https://doi.org/10.1016/j.polymer.2009.04.063

    Article  Google Scholar 

  99. Mussoline W, Esposito G, Giordano A, Lens P (2013) The anaerobic digestion of rice straw: a review. Crit Rev Environ Sci Technol 43(9):895–915. https://doi.org/10.1080/10643389.2011.627018

    Article  Google Scholar 

  100. Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment—a review. Biotechnol Bioeng 109(6):1430–1442. https://doi.org/10.1002/bit.24464

    Article  Google Scholar 

  101. Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4(1):1–19. https://doi.org/10.1186/1754-6834-4-27

    Article  MathSciNet  Google Scholar 

  102. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  103. Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenes JP, Steyer J-P et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183(1–3):1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  Google Scholar 

  104. Ge H, Jensen PD, Batstone DJ (2011) Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res 45(4):1597–1606. https://doi.org/10.1016/j.watres.2010.11.042

    Article  Google Scholar 

  105. Ge H, Jensen PD, Batstone DJ (2010) Pre-treatment mechanisms during thermophilic–mesophilic temperature phased anaerobic digestion of primary sludge. Water Res 44(1):123–130. https://doi.org/10.1016/j.watres.2009.09.005

    Article  Google Scholar 

  106. Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. J Waste Manag 32(9):1634–1650. https://doi.org/10.1016/j.wasman.2012.04.016

    Article  Google Scholar 

  107. ShiWei YCC, Chuah CH (2019) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115744

    Article  Google Scholar 

  108. Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G et al (2017) Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-02043-1

    Article  Google Scholar 

  109. Tuveng TR, Rothweiler U, Udatha G, Vaaje-Kolstad G, Smalås A, Eijsink VG (2017) Structure and function of a CE4 deacetylase isolated from a marine environment. PLoS ONE 12(11):e0187544. https://doi.org/10.1371/journal.pone.0187544

    Article  Google Scholar 

  110. Vaikuntapu PR, Rambabu S, Madhuprakash J, Podile AR (2016) A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. Bioresour Technol 220:200–207. https://doi.org/10.1016/j.biortech.2016.08.055

    Article  Google Scholar 

  111. Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG (2009) Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 284(16):10610–10617. https://doi.org/10.1074/jbc.m900092200

    Article  Google Scholar 

  112. Heggset EB, Dybvik AI, Hoell IA, Norberg AL, Sørlie M, Eijsink VG et al (2010) Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3 (2). Biomacromol 11(9):2487–2497. https://doi.org/10.1021/bm1006745

    Article  Google Scholar 

  113. Mekasha S, Toupalová H, Linggadjaja E, Tolani HA, Anděra L, Arntzen MØ et al (2016) A novel analytical method for d-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail. Carbohydr Res 433:18–24. https://doi.org/10.1016/j.carres.2016.07.003

    Article  Google Scholar 

  114. Heggset EB, Hoell IA, Kristoffersen M, Eijsink VG, Vårum KM (2009) Degradation of chitosans with chitinase G from Streptomyces coelicolor A3 (2): production of chito-oligosaccharides and insight into subsite specificities. Biomacromol 10(4):892–899. https://doi.org/10.1021/bm801418p

    Article  Google Scholar 

  115. Heggset EB, Tuveng TR, Hoell IA, Liu Z, Eijsink VG, Vårum KM (2012) Mode of action of a family 75 chitosanase from Streptomyces avermitilis. Biomacromol 13(6):1733–1741. https://doi.org/10.1021/bm201521h

    Article  Google Scholar 

  116. Eide KB, Norberg AL, Heggset EB, Lindbom AR, Vårum KM, Eijsink VG et al (2012) Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry 51(1):487–495. https://doi.org/10.1021/bi2015585

    Article  Google Scholar 

  117. Songsiriritthigul C, Pesatcha P, Eijsink VG, Yamabhai M (2009) Directed evolution of a Bacillus chitinase. Biotechnol J 4(4):501–509. https://doi.org/10.1002/biot.200800258

    Article  Google Scholar 

  118. Pechsrichuang P, Lorentzen SB, Aam BB, Tuveng TR, Hamre AG, Eijsink VG et al (2018) Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydr Polym 186:420–428. https://doi.org/10.1016/j.carbpol.2018.01.059

    Article  Google Scholar 

  119. Lv M, Hu Y, Gänzle MG, Lin J, Wang C, Cai J (2016) Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase. Carbohydr Res 430:1–7. https://doi.org/10.1016/j.carres.2016.04.019

    Article  Google Scholar 

  120. Wu Q, Liu T, Yang Q (2013) Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. Insect Sci 20(2):147–157. https://doi.org/10.1111/j.1744-7917.2012.01512.x

    Article  Google Scholar 

  121. Berezina N. (2016) Production and application of chitin. Phys. Sci. Rev. 1(9). https://doi.org/10.1515/psr-2016-0048

Download references

Funding

This research was supported by the start-up fund for the construction of the double first-class project (No. 561119201), Lanzhou University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed Salama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, G., Sharma, M., Salama, ES. et al. Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways. Biomass Conv. Bioref. 14, 4567–4581 (2024). https://doi.org/10.1007/s13399-022-02684-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02684-x

Keywords

Navigation