Skip to main content

Advertisement

Log in

The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The mechanism of chemical and physical activation during biomass pyrolysis is crucial for the more effective use of biomass and the preparation of functional porous biochemical materials. In this study, raw tea waste (RTW) was used to prepare the biochar samples by pyrolysis at 300 and 500 °C following phosphoric acid (H3PO4) and potassium hydroxide (KOH) activation along with microwave (MW) and ultrasound irradiation (US). Textural and chemical changes of biochar samples were designed by activation conditions and characterized in detail. SEM and N2 adsorption–desorption results showed that US and MW activation increased dramatically the surface area of the biochar from 942 m2/g to 1984 m2/g in the presence of H3PO4 and from 87 m2/g to 806 m2/g in the presence of KOH. While homogenous cylindrical macropores biochar was produced by acid-assisted US activation, microporous spherical nano-sized particles could be produced by acid-assisted US-MW hybrid activation. Above an optimum US activation time, the pores and channels in the biochar were destroyed and sintering of the particles occurred. Pyrolysis at 300 °C of the RTW activated with KOH led to the hydroxylation and reorganization of oxygen-containing functional groups and C-H groups on the surface. Before pyrolysis, the hybrid activation of biomass by physical and chemical methods can obtain the production of efficient engineered materials with preferable surface area and porosity, composition, and availability of functional groups in many applications, such as catalyst, energy storage and conversion, wastewater treatment, and soil remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mohanty SK, Valenca R, Berger AW et al (2018) Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Sci Total Environ 625:1644–1658. https://doi.org/10.1016/j.scitotenv.2018.01.037

    Article  Google Scholar 

  2. Rahman MZ, Edvinsson T, Kwong P (2020) Biochar for electrochemical applications. Curr Opin Green Sustain Chem 23:25–30. https://doi.org/10.1016/j.cogsc.2020.04.007

    Article  Google Scholar 

  3. Lee J, Kim KH, Kwon EE (2017) Biochar as a Catalyst. Renew Sustain Energy Rev 77:70–79. https://doi.org/10.1016/j.rser.2017.04.002

    Article  Google Scholar 

  4. Singh JS, Singh C (2020) Biochar applications in agriculture and environment management. Springer International Publishing, Cham. http://link.springer.comhttps://doi.org/10.1007/978-3-030-40997-5

  5. Matovic D (2011) Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36:2011–2016. https://doi.org/10.1016/j.energy.2010.09.031

    Article  Google Scholar 

  6. Li X, Wang C, Tian J et al (2020) Comparison of adsorption properties for cadmium removal from aqueous solution by Enteromorpha prolifera biochar modified with different chemical reagents. Environ Res 186:109502. https://doi.org/10.1016/j.envres.2020.109502

    Article  Google Scholar 

  7. Zaker A, Chen Z, Wang X, Zhang Q (2019) Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process Technol 187:84–104. https://doi.org/10.1016/j.fuproc.2018.12.011

    Article  Google Scholar 

  8. Sajjadi B, Chen WY, Egiebor NO (2019) A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng 35(6):735–776. https://doi.org/10.1515/revce-2017-0113

    Article  Google Scholar 

  9. Sajjadi B, Zubatiuk T, Leszczynska D et al (2019) Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev Chem Eng 35:777–815. https://doi.org/10.1515/revce-2018-0003

    Article  Google Scholar 

  10. Duan S, Ma W, Pan Y et al (2017) Synthesis of magnetic biochar from iron sludge for the enhancement of Cr (VI) removal from solution. J Taiwan Inst Chem Eng 80:835–841. https://doi.org/10.1016/j.jtice.2017.07.002

    Article  Google Scholar 

  11. Peng H, Gao P, Chu G et al (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    Article  Google Scholar 

  12. Arami-Niya A, Daud WMAW, Mjalli FS (2011) Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem Eng Res Des 89:657–664. https://doi.org/10.1016/j.cherd.2010.10.003

    Article  Google Scholar 

  13. Kan Y, Yue Q, Li D et al (2017) Preparation and characterization of activated carbons from waste tea by H 3 PO 4 activation in different atmospheres for oxytetracycline removal. J Taiwan Inst Chem Eng 71:494–500. https://doi.org/10.1016/j.jtice.2016.12.012

    Article  Google Scholar 

  14. Villota EM, Lei H, Qian M et al (2018) Optimizing microwave-assisted pyrolysis of phosphoric acid-activated biomass: impact of concentration on heating rate and carbonization time. ACS Sustain Chem Eng 6:1318–1326. https://doi.org/10.1021/acssuschemeng.7b03669

    Article  Google Scholar 

  15. Yagmur E, Ozmak M, Aktas Z (2008) A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 87:3278–3285. https://doi.org/10.1016/j.fuel.2008.05.005

    Article  Google Scholar 

  16. Li B, Li K (2019) Effect of nitric acid pre-oxidation concentration on pore structure and nitrogen/oxygen active decoration sites of ethylenediamine -modified biochar for mercury(II) adsorption and the possible mechanism. Chemosphere 220:28–39. https://doi.org/10.1016/j.chemosphere.2018.12.099

    Article  Google Scholar 

  17. Wang Q, Wang B, Lee X et al (2018) Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Sci Total Environ 634:188–194. https://doi.org/10.1016/j.scitotenv.2018.03.189

    Article  Google Scholar 

  18. Xia D, Tan F, Zhang C et al (2016) ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal. Appl Surf Sci 377:361–369. https://doi.org/10.1016/j.apsusc.2016.03.109

    Article  Google Scholar 

  19. Wang H, Gao B, Wang S et al (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197:356–362. https://doi.org/10.1016/j.biortech.2015.08.132

    Article  Google Scholar 

  20. Shamsuddin MS, Yusoff NRN, Sulaiman MA (2016) Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chem 19:558–565. https://doi.org/10.1016/j.proche.2016.03.053

    Article  Google Scholar 

  21. Duan X, Srinivasakannan C, Wang X et al (2017) Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. J Taiwan Inst Chem Eng 70:374–381. https://doi.org/10.1016/j.jtice.2016.10.036

    Article  Google Scholar 

  22. Han X, Chu L, Liu S et al (2015) Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. BioResources 10(2):1–14

    Article  Google Scholar 

  23. Li S, Han K, Li J et al (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300. https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  Google Scholar 

  24. Deng H, Lu J, Li G et al (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334. https://doi.org/10.1016/j.cej.2011.06.013

    Article  Google Scholar 

  25. Gueye M, Richardson Y, Kafack FT, Blin J (2014) High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J Environ Chem Eng 2:273–281. https://doi.org/10.1016/j.jece.2013.12.014

    Article  Google Scholar 

  26. Chatterjee R, Sajjadi B, Mattern DL et al (2018) Ultrasound cavitation intensified amine functionalization: A feasible strategy for enhancing CO2 capture capacity of biochar. Fuel 225:287–298. https://doi.org/10.1016/j.fuel.2018.03.145

    Article  Google Scholar 

  27. Peter A, Chabot B, Loranger E (2020) The influence of ultrasonic pre-treatments on metal adsorption properties of softwood-derived biochar. Bioresour Technol Reports 11:10044. https://doi.org/10.1016/j.biteb.2020.100445

    Article  Google Scholar 

  28. Sajjadi B, Broome JW, Chen WY et al (2019) Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity. Ultrason Sonochem 51:20–30. https://doi.org/10.1016/j.ultsonch.2018.09.015

    Article  Google Scholar 

  29. Zhang C, Zhang Z, Zhang L et al (2020) Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. Bioresour Technol 304:123002. https://doi.org/10.1016/J.BIORTECH.2020.123002

    Article  Google Scholar 

  30. Lee Y, Park J, Ryu C et al (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201. https://doi.org/10.1016/J.BIORTECH.2013.08.135

    Article  Google Scholar 

  31. Dieng H, Zawawi RBM, Yusof NISBM et al (2016) Green tea and its waste attract workers of formicine ants and kill their workers—implications for pest management. Ind Crops Prod 89:157–166. https://doi.org/10.1016/j.indcrop.2016.05.019

    Article  Google Scholar 

  32. Çay S, Uyanik A, Özaşik A (2004) Single and binary component adsorption of copper(II) andcadmium(II) from aqueous solutions using tea-industry waste. Sep Purif Technol 38:273–280. https://doi.org/10.1016/j.seppur.2003.12.003

    Article  Google Scholar 

  33. Wang L, Bolan NS, Tsang DCW, Hou D (2020) Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci Total Environ 720:137584. https://doi.org/10.1016/j.scitotenv.2020.137584

    Article  Google Scholar 

  34. Chen Y, Liu C, Chang PR et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohydr Polym 76:607–615. https://doi.org/10.1016/j.carbpol.2008.11.030

    Article  Google Scholar 

  35. Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. https://doi.org/10.1007/s10570-010-9436-4

    Article  Google Scholar 

  36. Zhao T, Chen Z, Lin X et al (2018) Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym 184:164–170. https://doi.org/10.1016/j.carbpol.2017.12.024

    Article  Google Scholar 

  37. Qu J, Wang Y, Tian X et al (2021) KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J Hazard Mater 401:123392. https://doi.org/10.1016/j.jhazmat.2020.123292

    Article  Google Scholar 

  38. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  39. Suganuma S, Nakajima K, Kitano M et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO 3 H, COOH, and OH Groups. J Am Chem Soc 130:12787–12793. https://doi.org/10.1021/ja803983h

    Article  Google Scholar 

  40. Döscher H, Geisz JF, Deutsch TG, Turner JA (2014) Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7:2951–2956. https://doi.org/10.1039/C4EE01753F

    Article  Google Scholar 

  41. Zhang M, He C, Liu E et al (2015) Activated Carbon Nanochains with Tailored Micro-Meso Pore Structures and Their Application for Supercapacitors. J Phys Chem C 119(38):21810–21817. https://doi.org/10.1021/acs.jpcc.5b05480

    Article  Google Scholar 

  42. Gascó G, Paz-Ferreiro J, Álvarez ML et al (2018) Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag 79:395–403. https://doi.org/10.1016/j.wasman.2018.08.015

    Article  Google Scholar 

  43. Hayashi J, Horikawa T, Takeda I et al (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon N Y 40(13):2381–2386. https://doi.org/10.1016/S0008-6223(02)00118-5

    Article  Google Scholar 

  44. Raymundo-Piñero E, Azaïs P, Cacciaguerra T et al (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N Y 43(4):786–795. https://doi.org/10.1016/j.carbon.2004.11.005

    Article  Google Scholar 

  45. Xiao J, Hu R, Chen G (2020) Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J Hazard Mater 387:121980. https://doi.org/10.1016/j.jhazmat.2019.121980

    Article  Google Scholar 

  46. Jin H, Capareda S, Chang Z et al (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. https://doi.org/10.1016/j.biortech.2014.06.103

    Article  Google Scholar 

  47. Sizmur T, Fresno T, Akgül G et al (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  Google Scholar 

  48. Vijayaraghavan K (2019) Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ Technol Rev 8:47–64. https://doi.org/10.1080/21622515.2019.1631393

    Article  Google Scholar 

  49. Lam SS, Yek PNY, Ok YS et al (2020) Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater 390:121649. https://doi.org/10.1016/j.jhazmat.2019.121649

    Article  Google Scholar 

  50. El-Hendawy ANA (2009) An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb 2+ cations. Appl Surf Sci 255:3723–3730. https://doi.org/10.1016/j.apsusc.2008.10.034

    Article  Google Scholar 

  51. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: A review. J Clean Prod 227:1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

    Article  Google Scholar 

  52. Chen W, Gong M, Li K et al (2020) Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl Energy 278:115730. https://doi.org/10.1016/j.apenergy.2020.115730

    Article  Google Scholar 

  53. Shen Y (2018) K-looping catalytic pyrolysis of unaltered and pelletized biomass for in situ tar reduction and porous carbon production. Sustain Energy Fuels 2:2770–2777. https://doi.org/10.1039/C8SE00419F

    Article  Google Scholar 

  54. Cantrell KB, Hunt PG, Uchimiya M et al (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  Google Scholar 

  55. Schimmelpfennig S, Glaser B (2012) One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J Environ Qual 41:1001–1013. https://doi.org/10.2134/jeq2011.0146

    Article  Google Scholar 

  56. Dehkhoda AM, Gyenge E, Ellis N (2016) A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage. Biomass Bioenerg 87:107–121. https://doi.org/10.1016/j.biombioe.2016.02.023

    Article  Google Scholar 

  57. Zhou J, Li Z, Xing W, Shen H, Bi X, Zhu T, Qiu Z, Zhuo S (2016) A new approach to tuning carbon ultramicropore size at sub-angstrom level for maximizing specific capacitance and CO2 uptake. Adv Funct Mater 26(44):7955–7964. https://doi.org/10.1002/adfm.201601904

  58. Liu L, Li Y, Fan S (2019) Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes 7(891):1–20. https://doi.org/10.3390/pr7120891

  59. Huang H, Tang J, Gao K et al (2017) Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics. RSC Adv 7:14640–14648. https://doi.org/10.1039/C6RA27881G

    Article  Google Scholar 

  60. Dai C, Wan J, Yang J et al (2018) H 3 PO 4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors. Appl Surf Sci 444:105–117. https://doi.org/10.1016/j.apsusc.2018.02.261

    Article  Google Scholar 

  61. Wang W, Ma X, Sun J et al (2019) Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar. Spectrosc Lett 52:367–375. https://doi.org/10.1080/00387010.2019.1648296

    Article  Google Scholar 

  62. Sricharoenchaikul V, Pechyen C, Aht-Ong D, Atong D (2008) Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy Fuels 22(1):31–37. https://doi.org/10.1021/ef700285u

    Article  Google Scholar 

  63. Bushra B, Remya N (2020) Biochar from pyrolysis of rice husk biomass-characteristics, modification and environmental application. Biomass Conv Bioref 1–13. https://doi.org/10.1007/s13399-020-01092-3

  64. Hadoun H, Sadaoui Z, Souami N et al (2013) Characterization of mesoporous carbon prepared from date stems by H 3 PO 4 chemical activation. Appl Surf Sci 280:1–7. https://doi.org/10.1016/j.apsusc.2013.04.054

    Article  Google Scholar 

  65. Valero-Romero MJ, García-Mateos FJ, Rodríguez-Mirasol J, Cordero T (2017) Role of surface phosphorus complexes on the oxidation of porous carbons. Fuel Process Technol 157:116–126. https://doi.org/10.1016/j.fuproc.2016.11.014

    Article  Google Scholar 

  66. Chu G, Zhao J, Huang Y et al (2018) Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ Pollut 240:1–9. https://doi.org/10.1016/j.envpol.2018.04.003

    Article  Google Scholar 

  67. Song M, Zhou Y, Ren X et al (2019) Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. J Colloid Interface Sci 535:276–286. https://doi.org/10.1016/j.jcis.2018.09.055

    Article  Google Scholar 

  68. Chemat F, Rombaut N, Sicaire A-G et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  Google Scholar 

  69. Guo J, Lua AC (2002) Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. J Colloid Interface Sci 254:227–233. https://doi.org/10.1006/jcis.2002.8587

    Article  Google Scholar 

  70. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon N Y 41:267–275. https://doi.org/10.1016/S0008-6223(02)00279-8

    Article  Google Scholar 

  71. Raymundo-Piñero E, Azaïs P, Cacciaguerra T et al (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N Y 43:786–795. https://doi.org/10.1016/j.carbon.2004.11.005

    Article  Google Scholar 

  72. Schnitzer MI, Monreal CM, Facey GA, Fransham PB (2007) The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13 C and 1 H NMR and FTIR spectrophotometry. J Environ Sci Heal Part B 42:71–77. https://doi.org/10.1080/03601230601020894

    Article  Google Scholar 

  73. Xu Y, Bai T, Yan Y, Ma K (2020) Influence of sodium hydroxide addition on characteristics and environmental risk of heavy metals in biochars derived from swine manure. Waste Manag 105:511–519

    Article  Google Scholar 

  74. Uchimiya M, Wartelle LH, Klasson KT et al (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  Google Scholar 

  75. Bekiaris G, Peltre C, Jensen LS, Bruun S (2016) Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochim Acta - Part A Mol Biomol Spectrosc 168:29–36. https://doi.org/10.1016/j.saa.2016.05.049

    Article  Google Scholar 

  76. Michalak I, Basladynska S, Mokrzycki J et al (2019) Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water 11:1–16. https://doi.org/10.3390/w11071390

  77. Zhao C, Ma J, Li Z et al (2020) Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants. RSC Adv 10:5066–5076. https://doi.org/10.1039/c9ra09208k

    Article  Google Scholar 

  78. Ahmad M, Lee SS, Rajapaksha AU et al (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol 143:615–622. https://doi.org/10.1016/j.biortech.2013.06.033

    Article  Google Scholar 

  79. Rajapaksha AU, Vithanage M, Zhang M et al (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308. https://doi.org/10.1016/j.biortech.2014.05.029

    Article  Google Scholar 

  80. Zhang H, Ke S, Xia M et al (2021) Effects of phosphorous precursors and speciation on reducing bioavailability of heavy metal in paddy soil by engineered biochars. Environ Pollut 285:117459. https://doi.org/10.1016/J.ENVPOL.2021.117459

    Article  Google Scholar 

  81. Tan Z, Yuan S, Hong M et al (2020) Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J Hazard Mater 384:121370. https://doi.org/10.1016/J.JHAZMAT.2019.121370

    Article  Google Scholar 

Download references

Acknowledgements

Author thanks the Sivas Cumhuriyet University Scientific Research Foundation (M-784) for supporting her contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayten Ateş.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateş, A. The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH. Biomass Conv. Bioref. 13, 9075–9094 (2023). https://doi.org/10.1007/s13399-021-01838-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01838-7

Keywords

Navigation