Skip to main content

Advertisement

Log in

Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Fruit and vegetable marketplace waste (FVMW) is an appealing alternative for energy production and should be utilized as a single substrate in anaerobic digestion (AD)–based biogas plants at an industrial-scale level in subtropical climatic countries. India alone generates 961,000 tons of FVMW annually from the major fruit and vegetable markets (FVMs). Utilization of FVMW to produce useful energy by AD could be helpful in meeting the ever-increasing energy demands of these countries. AD of fruit and vegetable waste (FVW) by two-phase systems has revealed good results in terms of stability, performance, and biogas generation; however, innovative approaches like plug flow tank reactor (PFTR) with passive solar heating with no mixing and no energy heating coupled with heat balance models and resistance network–based heat balance models need to be researched for subtropical climatic conditions in order to optimize the economics and energy balance of an AD system. Food waste and slaughter house wastes could be utilized successfully as co-substrates with FVW. C/N ratio is a critical performance parameter in the AD systems involving co-substrates; however, the synergistic relationship among co-substrates and characteristics, viz., macro- and micronutrients of individual co-substrates, must be investigated to improve the AD process. The optimum proportions of co-substrates could be determined by individual substrate characterization, biomethanation potential (BMP), and biodegradation kinetic models, thereby saving time and money as compared with random experimentation. Thermal, ultrasonic, and electrical pre-treatment in addition to physical pre-treatment could be effectively used for pre-treating FVW; however, synergy between co-substrates and pre-treatment method must be researched in order to justify the increased cost in extra pre-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. Urban Dev Ser Knowl Pap no 15. https://doi.org/10.1201/9781315593173-4

  2. Kumar S, Chakrabarti T (2010) Effective municipal solid waste management in India. Waste Manag. https://doi.org/10.5772/8459

  3. Sosnowski P, Wieczorek A, Environmental SL-A in, 2003 U (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Elsevier 7:609–616

    Google Scholar 

  4. Wang Z, Geng L (2015) Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. J Clean Prod 104:177–184. https://doi.org/10.1016/j.jclepro.2015.05.062

    Article  Google Scholar 

  5. Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34:2116–2123. https://doi.org/10.1016/j.energy.2008.08.023

    Article  Google Scholar 

  6. Joshi RK, Ahmed S (2016) Municipal solid waste as a source of energy. 12th IEEE Int Conf Electron Energy, Environ Commun Comput Control (E3-C3), INDICON 2015 1–6. https://doi.org/10.1109/INDICON.2015.7443789

  7. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities - a review. Waste Manag 28:459–467. https://doi.org/10.1016/j.wasman.2007.02.008

    Article  Google Scholar 

  8. Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energ Rev 31:846–859. https://doi.org/10.1016/j.rser.2013.12.015

    Article  Google Scholar 

  9. Peng W, Pivato A (2019) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valori 10:465–481. https://doi.org/10.1007/s12649-017-0071-2

    Article  Google Scholar 

  10. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034

    Article  Google Scholar 

  11. Ali MA, Sattar MA, Islam MN, Inubushi K (2014) Integrated effects of organic, inorganic and biological amendments on methane emission, soil quality and rice productivity in irrigated paddy ecosystem of Bangladesh: field study of two consecutive rice growing seasons. Plant Soil 378:239–252. https://doi.org/10.1007/s11104-014-2023-y

    Article  Google Scholar 

  12. Bolzonella D, Battistoni P, Susini C, Cecchi F (2006) Anaerobic codigestion of waste activated sludge and OFMSW: the experiences of Viareggio and Treviso plants (Italy). Water Sci Technol 53:203–211. https://doi.org/10.2166/wst.2006.251

    Article  Google Scholar 

  13. Martí-Herrero J, Alvarez R, Rojas MR, Aliaga L, Céspedes R, Carbonell J (2014) Improvement through low cost biofilm carrier in anaerobic tubular digestion in cold climate regions. Bioresour Technol 167:87–93. https://doi.org/10.1016/j.biortech.2014.05.115

    Article  Google Scholar 

  14. Garfí M, Martí-herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sust Energ Rev 60:599–614

    Article  Google Scholar 

  15. Bundgaard, S. S., Kofoed-Wiuff, A., Herrmann, I. T., & Karlsson KB (2014) Experiences with biogas in Denmark

  16. Chanakya HN, Reddy BVV, Modak J (2009) Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters - a case study from India. Renew Energy 34:416–420. https://doi.org/10.1016/j.renene.2008.05.003

    Article  Google Scholar 

  17. Chanakya HN, Sharma I, Ramachandra TV (2009) Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste. Waste Manag 29:1306–1312. https://doi.org/10.1016/j.wasman.2008.09.014

    Article  Google Scholar 

  18. Singh J, Gu S (2010) Biomass conversion to energy in India—a critique. Renew Sust Energ Rev 14:1367–1378. https://doi.org/10.1016/j.rser.2010.01.013

    Article  Google Scholar 

  19. Singh V, Zaman P, Meher J (2007) Postharvest technology of fruits and vegetables. Fruit Veg 02:115–369. https://doi.org/10.1002/9780470751060.ch12

    Article  Google Scholar 

  20. Sharma N, Garcha S, Singh S (2020) Potential of Lactococcus lactis subsp. lactis MTCC 3041 as a biopreservative. J Microbiol Biotechnol Food Sci 9:168–171

    Google Scholar 

  21. Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2:1–18. https://doi.org/10.1080/23311843.2016.1139434

    Article  Google Scholar 

  22. Parihar RS, Ahmed S, Baredar P, Sharma A (2017) Characterisation and management of municipal solid waste in Bhopal, Madhya Pradesh, India. Proc Inst Civ Eng Waste Resour Manag 170:95–106. https://doi.org/10.1680/jwarm.17.00002

    Article  Google Scholar 

  23. Yu HW, Samani Z, Hanson A, Smith G (2002) Energy recovery from grass using two-phase anaerobic digestion. Waste Manag 22:1–5. https://doi.org/10.1016/S0956-053X(00)00121-5

    Article  Google Scholar 

  24. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, le Quéré C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823. https://doi.org/10.1038/ngeo1955

    Article  Google Scholar 

  25. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102:9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  Google Scholar 

  26. Gustavsson, Jenny, Christel Cederberg, Ulf Sonesson, Robert van Otterdijk AM (2011) Global food losses and food waste. Rome

    Google Scholar 

  27. Vijay VK, Kapoor R, Trivedi A (2015) Biogas as clean fuel for cooking and transportation needs in India. In: Advances in bioprocess technology. Springer International Publishing Switzerland, new Delhi

  28. Parihar RS, Ahmed S, Baredar P, et al (2019) MSWM in Bhopal city: a critical analysis and a roadmap for its sustainable management

  29. Thiagu Ranganathan (2015) The extent of wastage in Azadpur Mandi

  30. Malik ZA (2013) Assessment of production and marketing problems in Kashmir valley. J Econ Soc Dev 9:1–5

    Google Scholar 

  31. India_Productions @ apeda.in. In: APEDA Agri Exch. http://apeda.in/agriexchange/India Production/India_Productions.aspx?cat = fruit&hscode = 1040. Accessed 29 Jul 2020

  32. (2018) Monthwise Annual Price and Arrival Report. http://www.nhb.gov.in/OnlineClient/MonthwiseAnnualPriceandArrivalReport.aspx

  33. Food and Agribusiness Strategic Advisory & Research (FASAR) YB (2014) Fruits and vegetable availability maps of India

  34. Horticulture Statistics Division, Ministry of Agriculture & Farmers’ Welfare G of I (2018) Horticulture statistics at a glance 2018

  35. Anna Simet (2016) German biogas industry adds 150 plants in 2015

  36. Zhang T, Yang Y, Xie D (2015) Insights into the production potential and trends of China’s rural biogas. Int J Energy Res 39(8):1068–1082. https://doi.org/10.1002/er.3311

  37. Raynal J, Delgenks JP, Moletta R (1998) Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process 65:97–103

  38. Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26:389–399. https://doi.org/10.1016/j.biombioe.2003.08.006

    Article  Google Scholar 

  39. Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste 73:191–193

  40. Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263

    Article  Google Scholar 

  41. Kryvoruchko V, Machmu A, Bodiroza V et al (2009) Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass Bioenergy 33:620–627. https://doi.org/10.1016/j.biombioe.2008.10.003

    Article  Google Scholar 

  42. Scaglione D, Caffaz S, Ficara E, Malpei F, Lubello C (2008) A simple method to evaluate the short-term biogas yield in anaerobic codigestion of WAS and organic wastes. Water Sci Technol 58:1615–1622. https://doi.org/10.2166/wst.2008.502

    Article  Google Scholar 

  43. Parawira W, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29:1811–1823. https://doi.org/10.1016/j.renene.2004.02.005

    Article  Google Scholar 

  44. Lehtomaki A, Viinikainen TA, Rintala JA (2008) Screening boreal energy crops and crop residues for methane biofuel production. Biomass Bioenergy 32:541–550. https://doi.org/10.1016/j.biombioe.2007.11.013

    Article  Google Scholar 

  45. Dinuccio; E. PBFGSM (2010) Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Elsevier 101:3780–3783. https://doi.org/10.1016/j.biortech.2009.12.113

  46. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells ) into hydrogen and methane through anaerobic digestion. 53:165–168

  47. Viturtia AM, Cecchi F, Fazzini G (1989) Two-phase anaerobic digestion of a mixture of fruit and vegetable wastes 29:189–199

  48. Verrier D, Roy F, Albagnac G (1987) Two-phase methanization of solid vegetable wastes. Biol Wastes 22:163–177. https://doi.org/10.1016/0269-7483(87)90022-X

    Article  Google Scholar 

  49. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995. https://doi.org/10.1016/j.procbio.2004.03.007

    Article  Google Scholar 

  50. Dhanalakshmi Sridevi V, Rema T, Srinivasan SV (2015) Studies on biogas production from vegetable market wastes in a two-phase anaerobic reactor. Clean Techn Environ Policy 17:1689–1697. https://doi.org/10.1007/s10098-014-0883-8

    Article  Google Scholar 

  51. Edwiges T, Frare LM (2017) Use of mathematical models to fast predict biochemical methane potential of fruit and vegetable waste. 2–6

  52. Bouallagui H, Lahdheb H, Ben RE et al (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manag 90:1844–1849. https://doi.org/10.1016/j.jenvman.2008.12.002

    Article  Google Scholar 

  53. Bouallagui H, Torrijos M, Godon JJ, et al (2004) Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance 21:193–197. https://doi.org/10.1016/j.bej.2004.05.001

  54. Yap HY, Nixon JD (2015) A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag 46:265–277. https://doi.org/10.1016/j.wasman.2015.08.002

    Article  Google Scholar 

  55. Ali G, Abbas S, Tanikawa H, et al (2013) Comparative cost analysis of waste recycling for best energy alternative. Faculty of Social Sciences, University of Agriculture Faisalabad, Pakistan 3:111–120

  56. Ali G, Abbas S, Mueen F (2013) How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia. Renew Sust Energ Rev 26:632–638. https://doi.org/10.1016/j.rser.2013.05.042

    Article  Google Scholar 

  57. Abbas T, Ali G, Ali S et al (2017) Economic analysis of biogas adoption technology by rural farmers: the case of Faisalabad district in Pakistan. Renew Energy 107:431–439. https://doi.org/10.1016/j.renene.2017.01.060

    Article  Google Scholar 

  58. Lin J, Zuo J, Gan L, Li P, Liu F, Wang K, Chen L, Gan H (2011) Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci 23:1403–1408. https://doi.org/10.1016/S1001-0742(10)60572-4

    Article  Google Scholar 

  59. Igoni AH, Abowei MFN, Ayotamuno MJ, Eze CL (2008) Effect of total solids concentration of municipal solid waste on the biogas produced in an anaerobic continuous digester. CIGR J X:1–11

  60. De Baere L (2016) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290. https://doi.org/10.2166/wst.2000.0082

    Article  Google Scholar 

  61. Monet F (2003) An introduction to anaerobic digestion of organic wastes

  62. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  Google Scholar 

  63. Mata-Alvarez J, Cecchi F, Llabrés P, Pavan P (1992) Anaerobic digestion of the Barcelona central food market organic wastes. Plant design and feasibility study. Bioresour Technol 42:33–42. https://doi.org/10.1016/0960-8524(92)90085-C

    Article  Google Scholar 

  64. Ganesh R, Torrijos M, Sousbie P, Lugardon A, Steyer JP, Delgenes JP (2014) Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Manag 34:875–885. https://doi.org/10.1016/j.wasman.2014.02.023

    Article  Google Scholar 

  65. Bouallagui H, Haouari O, Touhami Y, et al (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste 39:2143–2148. https://doi.org/10.1016/j.procbio.2003.11.022

  66. Martí-Herrero J, Soria-Castellón G, Diaz-de-Basurto A, Alvarez R, Chemisana D (2019) Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew Energy 133:676–684. https://doi.org/10.1016/j.renene.2018.10.030

    Article  Google Scholar 

  67. Shen F, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Liu Y, Ma J, Yu L, Li X (2013) Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresour Technol 144:80–85. https://doi.org/10.1016/j.biortech.2013.06.099

    Article  Google Scholar 

  68. Rajeshwari KV, Lata K, Pant DC, Kishore VVN (2001) A novel process using enhanced acidification and a UASB reactor for biomethanation of vegetable market waste. Waste Manag Res 19:292–300. https://doi.org/10.1177/0734242X0101900405

    Article  Google Scholar 

  69. Zoetemeyer RJ, Heuvel JCVANDEN, Cohen A (1982) pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res 16:303–311

    Article  Google Scholar 

  70. Liu D, Liu D, Zeng RJ, Ã IA (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process 40:2230–2236. https://doi.org/10.1016/j.watres.2006.03.029

  71. Mata-Alvarez J (2015) Biomethanization of the organic fraction. Edited by J. Mata-Alvarez, IWAw

    Google Scholar 

  72. Nielsen HB, Mladenovska Z, Westermann P, Ahring BK (2004) Comparison of two-stage thermophilic (68 °C/55 °C) anaerobic digestion with one-stage thermophilic (55 °C) digestion of cattle manure. https://doi.org/10.1002/bit.20037

  73. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol:130–134. https://doi.org/10.1371/journal.pone.0066845

  74. Zhang T, Liu L, Song Z, Ren G, Feng Y, Han X, Yang G (2013) Biogas production by co-digestion of goat manure with three crop residues. PLoS One 8:1–7. https://doi.org/10.1371/journal.pone.0066845

    Article  Google Scholar 

  75. Punal A, Trevisan M, Rozzi A, Lema JM (2000) Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Res 34:2614–2619

    Article  Google Scholar 

  76. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  77. Hegde G, Pullammanappallil P (2007) Comparison of thermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environ Technol 28:361–369. https://doi.org/10.1080/09593332808618797

    Article  Google Scholar 

  78. Parawira W, Murto M, Read JS, Mattiasson B (2007) A study of two-stage anaerobic digestion of solid potato waste using reactors under mesophilic and thermophilic conditions. Environ Technol 28:1205–1216. https://doi.org/10.1080/09593332808618881

    Article  Google Scholar 

  79. Perrigault T, Weatherford V, Martí-Herrero J, Poggio D (2012) Towards thermal design optimization of tubular digesters in cold climates: a heat transfer model. Bioresour Technol 124:259–268. https://doi.org/10.1016/j.biortech.2012.08.019

    Article  Google Scholar 

  80. Pham CH, Triolo JM, Sommer SG (2014) Predicting methane production in simple and unheated biogas digesters at low temperatures. Appl Energy 136:1–6. https://doi.org/10.1016/j.apenergy.2014.08.057

    Article  Google Scholar 

  81. Hilkiah Igoni A, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy 85:430–438. https://doi.org/10.1016/j.apenergy.2007.07.013

    Article  Google Scholar 

  82. Kowalczyk A, Harnisch E, Schwede S, Gerber M, Span R (2013) Different mixing modes for biogas plants using energy crops. Appl Energy 112:465–472. https://doi.org/10.1016/j.apenergy.2013.03.065

    Article  Google Scholar 

  83. Alvarez R, Liden G (2008) The effect of temperature variation on biomethanation at high altitude. Bioresour Technol 99:7278–7284. https://doi.org/10.1016/j.biortech.2007.12.055

    Article  Google Scholar 

  84. Mass DI, Masse L, Croteau F (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure 89:57–62. https://doi.org/10.1016/S0960-8524(03)00009-9

  85. Axaopoulos P, Panagakis P, Tsavdaris A, Georgakakis D (2001) Simulation and experimental performance of a solar-heated anaerobic digester. Sol Energy 70:155–164

    Article  Google Scholar 

  86. Chen YR, & Hashimoto AG (1978) Kinetics of methane fermentation. No CONF-780549-8 Sci Educ Adm Clay Center, NE (USA) Meat Anim Res Center

  87. Gebremedhin KG, Wu B, Gooch C et al (2005) Heat transfer model for plug-flow anaerobic digesters. Trans ASAE 48:777–785

    Article  Google Scholar 

  88. Terradas-ill G, Pham CH, Triolo JM, et al (2014) Thermic model to predict biogas production in unheated fixed-dome digesters buried in the ground

  89. Pedersen SV, Martí-Herrero J, Singh AK, Sommer SG, Hafner SD (2020) Management and design of biogas digesters: a non-calibrated heat transfer model. Bioresour Technol 296:122264

    Article  Google Scholar 

  90. Astals S, Batstone DJ, Mata-Alvarez J, Jensen PD (2014) Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour Technol 169:421–427. https://doi.org/10.1016/j.biortech.2014.07.024

    Article  Google Scholar 

  91. Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83. https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  92. Álvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101:1153–1158. https://doi.org/10.1016/j.biortech.2009.09.061

    Article  Google Scholar 

  93. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427. https://doi.org/10.1016/j.rser.2014.04.039

    Article  Google Scholar 

  94. Wang C, Zuo J, Chen X, Xing W, Xing L, Li P, Lu X, Li C (2014) Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw. JES 26:2484–2492. https://doi.org/10.1016/j.jes.2014.06.035

    Article  Google Scholar 

  95. Alvarez RGL (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew Energy 33:726–734. https://doi.org/10.1016/j.renene.2007.05.001

    Article  Google Scholar 

  96. Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111. https://doi.org/10.3109/07388551.2010.525496

    Article  Google Scholar 

  97. Astals S, Ariso M, Galí A, Mata-Alvarez J (2011) Co-digestion of pig manure and glycerine: experimental and modelling study. J Environ Manag 92:1091–1096. https://doi.org/10.1016/j.jenvman.2010.11.014

    Article  Google Scholar 

  98. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. 117–129

  99. Jensen P (2011) Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. https://doi.org/10.2166/wst.2011.662

  100. Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anerobic digesters 102:1513–1520. https://doi.org/10.1002/bit.22163

  101. Ebner JH, Labatut RA, Lodge JS, Williamson AA, Trabold TA (2016) Anaerobic co-digestion of commercial food waste and dairy manure: characterizing biochemical parameters and synergistic effects. Waste Manag 52:286–294. https://doi.org/10.1016/j.wasman.2016.03.046

    Article  Google Scholar 

  102. Safavi SM, Unnthorsson R (2017) Methane yield enhancement via electroporation of organic waste. Waste Manag 66:1–9. https://doi.org/10.1016/j.wasman.2017.02.032

    Article  Google Scholar 

  103. Zeynali R, Khojastehpour M, Ebrahimi-nik M (2017) SC. Sustain Environ Res. https://doi.org/10.1016/j.serj.2017.07.001, Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes

  104. Shanthi M, Banu JR, Sivashanmugam P (2018) Department of Chemical Engineering, Department of Civil Engineering, Regional Centre for Anna University. Bioresour Technol 264:35–41. https://doi.org/10.1016/j.biortech.2018.05.054

    Article  Google Scholar 

  105. Karouach F, Bakraoui M, El Y, Lahboubi N (2020) Effect of combined mechanical–ultrasonic pretreatment on mesophilic anaerobic digestion of household organic waste fraction in Morocco. Energy Rep 6:310–314. https://doi.org/10.1016/j.egyr.2019.11.081

    Article  Google Scholar 

  106. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  107. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46:557–565. https://doi.org/10.1016/j.procbio.2010.10.010

    Article  Google Scholar 

  108. Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto S, Toda T (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegradation 64:601–608. https://doi.org/10.1016/j.ibiod.2010.06.013

    Article  Google Scholar 

  109. Gillian WL (2011) Different pretreatments to enhance biogas production

  110. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156. https://doi.org/10.1016/j.apenergy.2014.02.035

    Article  Google Scholar 

  111. Zhou Y, Takaoka M, Wang W, Liu X, Oshita K (2013) Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. J Biosci Bioeng 116:101–105. https://doi.org/10.1016/j.jbiosc.2013.01.014

    Article  Google Scholar 

  112. Li Y, Jin Y (2015) Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renew Energy 77:550–557. https://doi.org/10.1016/j.renene.2014.12.056

    Article  Google Scholar 

  113. Li Y, Jin Y, Li J, Li H, Yu Z (2016) Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Appl Energy 172:47–58. https://doi.org/10.1016/j.apenergy.2016.03.080

    Article  Google Scholar 

  114. Carrère H, Dumas C, Battimelli A, et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review 183:1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129

  115. Appels L, Degrève J, Van Der Bruggen B et al (2010) Bioresource technology influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol 101:5743–5748. https://doi.org/10.1016/j.biortech.2010.02.068

    Article  Google Scholar 

  116. Wang L, Li A (2015) Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res 68:291–303. https://doi.org/10.1016/j.watres.2014.10.016

    Article  Google Scholar 

  117. Liu X, Wang W, Gao X, Zhou Y, Shen R (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 32:249–255. https://doi.org/10.1016/j.wasman.2011.09.027

    Article  Google Scholar 

  118. Ruggeri B, Malave ACL, Bernardi M, Fino D (2013) Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Manag 33:2225–2233. https://doi.org/10.1016/j.wasman.2013.06.024

    Article  Google Scholar 

  119. Sindhu R, Binod P, Pandey A (2015) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  Google Scholar 

  120. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269. https://doi.org/10.1016/j.carbpol.2013.08.045

    Article  Google Scholar 

  121. Dehghani MH (2016) Effectiveness of ultrasound on the destruction of E. coli. Am J Environ Sci 1:187–190. https://doi.org/10.3844/ajessp.2005.187.189

    Article  Google Scholar 

  122. Gronroos A, Pirkonen P, OR (2004) Ultrasonic depolymerization of aqueous carboxymethylcellulose q. Ultrason Sonochem 11:9–12. https://doi.org/10.1016/S1350-4177(03)00129-9

    Article  Google Scholar 

  123. Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29:768–780

    Article  Google Scholar 

  124. Rasapoor M, Ajabshirchi Y, Adl M, Abdi R, Gharibi A (2016) The effect of ultrasonic pretreatment on biogas generation yield from organic fraction of municipal solid waste under medium solids concentration circumstance. Energy Convers Manag 119:444–452. https://doi.org/10.1016/j.enconman.2016.04.066

    Article  Google Scholar 

  125. Rittmann BE, Lee HS, Zhang H, Alder J, Banaszak JE, Lopez R (2008) Full-scale application of focused-pulse pre-treatment for improving biosolids digestion and conversion to methane improving biosolids digestion and conversion to methane. Water Sci Technol 58:1895–1901. https://doi.org/10.2166/wst.2008.547

    Article  Google Scholar 

  126. Gerlach D, Alleborn N, Baars A, et al (2008) Numerical simulations of pulsed electric fields for food preservation: a review. 9:408–417. https://doi.org/10.1016/j.ifset.2008.02.001

  127. Salerno MB, Lee H, Parameswaran P, Rittmann BE (2009) Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis. 831–839. https://doi.org/10.2175/106143009X407366

  128. Neumann P, Pesante S, Venegas M, GV (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Bio/Technology 15:173–211. https://doi.org/10.1007/s11157-016-9396-8

    Article  Google Scholar 

  129. Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: conventional and emerging approaches. J Environ Manag 265:110510. https://doi.org/10.1016/j.jenvman.2020.110510

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the APMC Azadpur office, Azadpur, Delhi, for providing the arrival data and necessary information regarding the current fruit and vegetable waste management practices. The authors would also like to thank the National Horticulture Board, Ministry of Agriculture and farmer’s welfare, Govt. of India for providing the necessary data of the major FVMs in major cities of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahd Zia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 20 kb)

ESM 2

(XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, M., Ahmed, S. & Kumar, A. Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Conv. Bioref. 12, 3573–3592 (2022). https://doi.org/10.1007/s13399-020-00979-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00979-5

Keywords

Navigation