Skip to main content

Advertisement

Log in

Review on modelling approaches based on computational fluid dynamics for biomass combustion systems

Focus on fixed bed and moving grate systems

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass combustion is an important pathway of energy generation from renewable resources. Even though biomass combustion is an established conversion process, there is a high potential for further optimization of the used technologies. In particular, the advantage of numerical methods for the improvement of biomass combustion systems is not used to its full extent, because the simulation of these complex systems requires various sub-models for the thermo-chemical conversion of the biomass and sufficient computational resources for the combustion simulation. However, simulations are a valuable tool to enhance the design and operating conditions of biomass combustion systems with regard to high efficiency, low emissions and high flexibility. In addition, comparison of experimental and numerical results leads to a better understanding of the processes involved in biomass combustion. The present study gives a comprehensive overview of simulations of biomass combustion systems based on computational fluid dynamics that are available in the literature. It focusses on systems with fixed bed and covers various technologies (moving bed, pellet boilers, wood log stoves) as well as a wide range of sizes from laboratory reactors to industry scale. Besides woody biomass, also alternative fuels such as straw or municipal solid waste are considered. All relevant sub-models for the thermo-chemical conversion of the fuel on the one hand and for the gas-phase combustion on the other hand are discussed in detail. The recent advances in the concerned research fields are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BTX:

benzene, toluene, xylene

CFD:

computational fluid dynamics

CPU:

central processing unit

DEM:

discrete element method

DNS:

direct numerical simulation

DOM:

discrete ordinate model

DPM:

discrete particle model

DTRM:

discrete transfer radiation model

EBU:

eddy break-up model

EDC:

eddy dissipation concept

EDCM:

eddy dissipation combustion model

EDM:

eddy dissipation model

FR-ED:

finite rate/eddy dissipation model

FTIR:

Fourier transform infrared spectroscopy

GC-TCD:

gas chromatography–thermal conductivity detector

GRI:

gas research institute

ISAT:

in situ adaptive tabulation

JL:

Jones and Lindstedt

LES:

large eddy simulation

MSW:

municipal solid waste

PAC:

polyaromatic compounds

PAH:

polycyclic aromatic hydrocarbons

PDF:

probability density function

PFR:

plug flow reactor

RANS:

Reynolds-averaged Navier-Stokes equations

RNA:

reactor network array

RNG:

re-normalization group (k-ε model)

RSM:

differential Reynolds stress model

RTE:

radiative ransfer equation

SFM:

steady flamelet model

SST:

shear stress transport (k-ω model)

TGA:

thermogravimetric analysis

UDF:

user-defined function

UFM:

unsteady flamelet model

WD:

Westbrook and Dryer

WSSGM:

weighted-sum-of-gray-gases model

References

  1. Thrän D (ed) (2015) Smart bioenergy: Technologies and concepts for a more flexible bioenergy provision in future energy systems. Springer International Publishing, Cham

  2. Szarka N, Scholwin F, Trommler M, Jacobi FH, Eichhorn M, Ortwein A, Thrän D (2013) . Energy 61:18. https://doi.org/10.1016/j.energy.2012.12.053

    Article  Google Scholar 

  3. Thrän D, Dotzauer M, Lenz V, Liebetrau J, Ortwein A (2015) . Energy Sustain Soc 5(1):21. https://doi.org/10.1186/s13705-015-0062-8

    Article  Google Scholar 

  4. Pollex A, Ortwein A, Kaltschmitt M (2012) Biomass convers. Biorefin 2(1):21. https://doi.org/10.1007/s13399-011-0025-z

    Google Scholar 

  5. Lenz V, Ortwein A (2017) . Chem Eng Technol 40(2):313. https://doi.org/10.1002/ceat.201600188

    Article  Google Scholar 

  6. Ortwein A, Lenz V (2015). In: Thrän D (ed) Smart Bioenergy,. Springer International Publishing, Cham, pp 49–66. https://doi.org/10.1007/978-3-319-16193-8_4

  7. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse, Springer, Berlin. https://doi.org/10.1007/978-3-662-47438-9

  8. Warnatz J, Maas U, Dibble RW (2006) Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 4th. Springer, Berlin

    MATH  Google Scholar 

  9. Wu B (2013) . Comput Electron. Agr. 93:195. https://doi.org/10.1016/j.compag.2012.05.008

    Article  Google Scholar 

  10. Lee IB, Bitog JPP, Hong SW, Seo IH, Kwon KS, Bartzanas T, Kacira M (2013) . Comput Electron Agric 93:168. https://doi.org/10.1016/j.compag.2012.09.006

    Article  Google Scholar 

  11. Kong SC, Reitz RD (2002) . Proc Combust Inst 29(1):663. https://doi.org/10.1016/S1540-7489(02)80085-2

    Article  Google Scholar 

  12. Rutland CJ (2011) . Int J Engine Res 12 (5):421. https://doi.org/10.1177/1468087411407248

    Article  Google Scholar 

  13. Williams A, Pourkashanian M, Jones JM (2000) . Proc Combust Inst 28(2):2141. https://doi.org/10.1016/S0082-0784(00)80624-4. http://linkinghub.elsevier.com/retrieve/pii/S0082078400806244

    Article  Google Scholar 

  14. Yin C, Rosendahl LA, Kær SK (2008) . Prog Energy Combust Sci 34(6):725. https://doi.org/10.1016/j.pecs.2008.05.002

    Article  Google Scholar 

  15. Jones JM, Lea-Langton AR, Ma L, Pourkashanian M, Williams A (2014) Pollutants generated by the combustion of solid biomass fuels. Springerbriefs in applied sciences and technology. Springer, London

    Google Scholar 

  16. Tabet F, Gökalp I (2015) . Renewable Sustainable Energy Rev 51:1101. https://doi.org/10.1016/j.rser.2015.07.045. http://linkinghub.elsevier.com/retrieve/pii/S1364032115006929

    Article  Google Scholar 

  17. Khodaei H, Al-Abdeli YM, Guzzomi F, Yeoh GH (2015) . Energy 88:946. https://doi.org/10.1016/j.energy.2015.05.099

    Article  Google Scholar 

  18. Ragland KW, Aerts DJ, Baker AJ (1991) . Bioresour Technol 37(2):161. https://doi.org/10.1016/0960-8524(91)90205-X

    Article  Google Scholar 

  19. Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass. Ph.D. thesis, Norwegian University of Sience and Technology, Trondheim

  20. Melaaen MC (1996) Numerical heat transfer. Part A: Applications 29(4):331. https://doi.org/10.1080/10407789608913796

    Google Scholar 

  21. Thunman H, Leckner B (2002) . Biomass Bioenergy 23(1):47. https://doi.org/10.1016/S0961-9534(02)00031-4

    Article  Google Scholar 

  22. Plötze M, Niemz P (2011) . Eur J Wood Prod 69(4):649. https://doi.org/10.1007/s00107-010-0504-0

    Article  Google Scholar 

  23. Dupont C, Chiriac R, Gauthier G, Toche F (2014) . Fuel 115:644. https://doi.org/10.1016/j.fuel.2013.07.086

    Article  Google Scholar 

  24. Fatehi M, Kaviany M (1997) . Int J Heat Mass Transfer 40(11):2607. https://doi.org/10.1016/S0017-9310(96)00282-7

    Article  Google Scholar 

  25. Cooper J, Hallett W (2000) . Chem Eng Sci 55(20):4451. https://doi.org/10.1016/S0009-2509(00)00097-X

    Article  Google Scholar 

  26. Saastamoinen JJ, Taipale R, Horttanainen M, Sarkomaa P (2000) . Combust Flame 123(1-2):214. https://doi.org/10.1016/S0010-2180(00)00144-9

    Article  Google Scholar 

  27. Bryden KM, Ragland KW, Rutland CJ (2002) . Biomass Bioenergy 22(1):41. https://doi.org/10.1016/S0961-9534(01)00060-5

    Article  Google Scholar 

  28. Pyle DL, Zaror CA (1984) . Chem Eng Sci 39(1):147. https://doi.org/10.1016/0009-2509(84)80140-2

    Article  Google Scholar 

  29. Siau JF (1984) Transport processes in wood. Springer, Berlin

    Book  Google Scholar 

  30. Di Blasi C (1998) . Chem Eng Sci 53(2):353

    Article  Google Scholar 

  31. Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL (2012) . Fuel Process Technol 95:96. https://doi.org/10.1016/j.fuproc.2011.11.021

    Article  Google Scholar 

  32. Jalili M (2015) Multi-scale modeling of fixed-bed drying of woody fuel particles. Ph.D. thesis, TU Berlin

  33. Di Blasi C, Branca C , Sparano S, La Mantia B (2003) . Biomass Bioenergy 25(1):45. https://doi.org/10.1016/S0961-9534(02)00180-0

    Article  Google Scholar 

  34. Thunman H, Leckner B, Niklasson F, Johnsson F (2002) . Combust Flame 129(1-2):30. https://doi.org/10.1016/S0010-2180(01)00371-6

    Article  Google Scholar 

  35. Chan WCR, Kelbon M, Krieger BB (1985) . Fuel 64(11):1505. https://doi.org/10.1016/0016-2361(85)90364-3

    Article  Google Scholar 

  36. Sreekanth M, Sudhakar DR, Prasad B, Kolar AK, Leckner B (2008) . Fuel 87(12):2698. https://doi.org/10.1016/j.fuel.2008.02.005

    Article  Google Scholar 

  37. Bryden KM, Hagge MJ (2003) . Fuel 82(13):1633. https://doi.org/10.1016/S0016-2361(03)00108-X

    Article  Google Scholar 

  38. Porteiro J, Míguez JL, Granada E, Moran JC (2006) . Fuel Process Technol 87(2):169. https://doi.org/10.1016/j.fuproc.2005.08.012

    Article  Google Scholar 

  39. Saastamoinen J, Richard JR (1996) . Combust Flame 106(3):288. https://doi.org/10.1016/0010-2180(96)00001-6

    Article  Google Scholar 

  40. Peters B (2002) . Combust Flame 131(1-2):132. https://doi.org/10.1016/S0010-2180(02)00393-0

    Article  Google Scholar 

  41. Zhou H, Jensen A, Glarborg P, Jensen P, Kavaliauskas A (2005) . Fuel 84(4):389. https://doi.org/10.1016/j.fuel.2004.09.020

    Article  Google Scholar 

  42. Wurzenberger JC, Wallner S, Raupenstrauch H, Khinast JG (2002) . AIChE J 48(10):2398. https://doi.org/10.1002/aic.690481029

    Article  Google Scholar 

  43. Chaney J, Liu H, Li J (2012) . Energy Convers Manage 63:149. https://doi.org/10.1016/j.enconman.2012.01.036

    Article  Google Scholar 

  44. Zhang X, Chen Q, Bradford R, Sharifi V, Swithenbank J (2010) . Fuel Process Technol 91 (11):1491. https://doi.org/10.1016/j.fuproc.2010.05.026

    Article  Google Scholar 

  45. Yang YB, Yamauchi H, Nasserzadeh V, Swithenbank J (2003) . Fuel 82(18):2205. https://doi.org/10.1016/S0016-2361(03)00145-5

    Article  Google Scholar 

  46. Anca-Couce A (2016) . Prog Energy Combust Sci 53:41. https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  47. Di Blasi C (2008) . Prog Energy Combust Sci 34(1):47. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  48. Czernik S, Bridgwater AV (2004) . Energy & Fuels 18(2):590. https://doi.org/10.1021/ef034067u

    Article  Google Scholar 

  49. Antal MJ, Grønli M (2003) . Ind Eng Chem Res 42(8):1619. https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  50. Di Blasi C (2009) . Prog Energy Combust Sci 35(2):121. https://doi.org/10.1016/j.pecs.2008.08.001

    Article  Google Scholar 

  51. White JE, Catallo WJ, Legendre BL (2011) . J Anal Appl Pyrolysis 91(1):1. https://doi.org/10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  52. Şensöz S, Can M (2002) . Energy Sources 24(4):347. https://doi.org/10.1080/00908310252888727

    Article  Google Scholar 

  53. Raveendran K, Ganesh A, Khilar KC (1996) . Fuel 75(8):987. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  Google Scholar 

  54. Di Blasi C (1996) . Ind Eng Chem Res 35(1):37. https://doi.org/10.1021/ie950243d

    Article  Google Scholar 

  55. Anca-Couce A (2012) Multi-scale approach to describe fixed-bed thermo-chemical processes of biomass. Ph.D. thesis, TU Berlin

  56. Peters B, Schröder E, Bruch C (2003) . J Appl Pyrolysis 70(2):211. https://doi.org/10.1016/S0165-2370(02)00133-X

    Article  Google Scholar 

  57. Dieguez-Alonso A, Anca-Couce A, Zobel N (2013) . J Anal Appl Pyrol 102:33. https://doi.org/10.1016/j.jaap.2013.04.005

    Article  Google Scholar 

  58. Anca-Couce A, Dieguez-Alonso A, Zobel N, Berger A, Kienzl N, Behrendt F (2017) . Energy & Fuels 31(3):2335. https://doi.org/10.1021/acs.energyfuels.6b02350

    Article  Google Scholar 

  59. Lédé J (2013) . Oil Gas Sci Technol - Rev IFP Energies Nouvelles 68(5):801. https://doi.org/10.2516/ogst/2013108

    Article  Google Scholar 

  60. Evans RJ, Milne TA (1987) . Energy Fuels 1(2):123. https://doi.org/10.1021/ef00002a001

    Article  Google Scholar 

  61. Milne TA, Evans RJ, Abatzaglou N Biomass gasifier “tars”: their nature, formation, and conversion. https://doi.org/10.2172/3726. NREL/TP-570-25357

  62. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) . Energy Fuels 22(6):4292. https://doi.org/10.1021/ef800551t

    Article  Google Scholar 

  63. Antal MJ Jr, Várhegyi G (1995) . Ind Eng Chem Res 34(3):703. https://doi.org/10.1021/ie00042a001

    Article  Google Scholar 

  64. Grønli MG, Várhegyi G, Di Blasi C (2002) . Ind Eng Chem Res 41(17):4201. https://doi.org/10.1021/ie0201157

    Article  Google Scholar 

  65. Di Blasi C (2000) . Chem Eng Sci 55(15):2931. https://doi.org/10.1016/S0009-2509(99)00562-X

    Article  Google Scholar 

  66. Di Blasi C (2004) . AIChE J 50(9):2306. https://doi.org/10.1002/aic.10189

    Article  Google Scholar 

  67. Liden AG, Berruti F, Scott DS (1988) . Chem Eng Commun 65(1):207. https://doi.org/10.1080/00986448808940254

    Article  Google Scholar 

  68. Boroson ML, Howard JB, Longwell JP, Peters WA (1989) . AIChE J 35(1):120. https://doi.org/10.1002/aic.690350113

    Article  Google Scholar 

  69. Shafizadeh F, Chin PPS (1977) . In: Goldstein IS (ed) Wood technology: chemical aspects. American Chemical Society, Washington, DC, pp 57–81

  70. Piskorz J, Radlein DS, Scott DS, Czernik S (1989) . J Anal Appl Pyrolysis 16(2):127. https://doi.org/10.1016/0165-2370(89)85012-0

    Article  Google Scholar 

  71. Broido A, Nelson MA (1975) . Combust Flame 24:263. https://doi.org/10.1016/0010-2180(75)90156-X

    Article  Google Scholar 

  72. Broido A (1976) . In: Shafizadeh F, Sarkanen KV, Tillman DA (eds) Thermal uses and properties of carbohydrates and lignins.. Academic Press, New York, pp 19–36 https://doi.org/10.1016/B978-0-12-637750-7.50006-6

  73. Shafizadeh F, Bradbury AGW (1979) . J Appl Polym Sci 23(5):1431. https://doi.org/10.1002/app.1979.070230513

    Article  Google Scholar 

  74. Bradbury AGW, Sakai Y, Shafizadeh F (1979) . J Appl Polym Sci 23(11):3271. https://doi.org/10.1002/app.1979.070231112

    Article  Google Scholar 

  75. Várhegyi G, Szabó P, Mok WSL, Antal MJ (1993) . J Anal Appl Pyrolysis 26(3):159. https://doi.org/10.1016/0165-2370(93)80064-7

    Article  Google Scholar 

  76. Mok WSL, Antal MJ (1983) . Thermochim Acta 68(2-3):165. https://doi.org/10.1016/0040-6031(83)80222-6

    Article  Google Scholar 

  77. Richards GN (1987) . J Anal Appl Pyrolysis 10(3):251. https://doi.org/10.1016/0165-2370(87)80006-2

    Article  Google Scholar 

  78. Mamleev V, Bourbigot S, Le bras M, Yvon J (2009) . J Anal Appl Pyrolysis 84(1):1. https://doi.org/10.1016/j.jaap.2008.10.014

    Article  Google Scholar 

  79. Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM (2014) . Energy Fuels 28(6):3884. https://doi.org/10.1021/ef500525v

    Article  Google Scholar 

  80. Ranzi E, Pierucci S, Aliprandi PC, Stringa S (2011) . Energy Fuels 25(9):4195. https://doi.org/10.1021/ef200902v

    Article  Google Scholar 

  81. Ranzi E, Corbetta M, Manenti F, Pierucci S (2014) . Chem Eng Sci 110:2. https://doi.org/10.1016/j.ces.2013.08.014

    Article  Google Scholar 

  82. Anca-Couce A, Mehrabian R, Scharler R, Obernberger I (2014) . Energy Convers Manage 87:687. https://doi.org/10.1016/j.enconman.2014.07.061

    Article  Google Scholar 

  83. Thurner F, Mann U (1981) . Ind Eng Chem Process Des Dev 20(3):482. https://doi.org/10.1021/i200014a015

    Article  Google Scholar 

  84. Nunn TR, Howard JB, Longwell JP, Peters WA (1985) . Ind Eng Chem Process Des Dev 24(3):836. https://doi.org/10.1021/i200030a053

    Article  Google Scholar 

  85. Alves SS, Figueiredo JL (1988) . J Anal Appl Pyrolysis 13(1-2):123. https://doi.org/10.1016/0165-2370(88)80052-4

    Article  Google Scholar 

  86. Font R, Marcilla A, Verdu E, Devesa J (1990) . Ind Eng Chem Res 29(9):1846. https://doi.org/10.1021/ie00105a016

    Article  Google Scholar 

  87. Roberts AF (1970) . Combust Flame 14(2):261. https://doi.org/10.1016/S0010-2180(70)80037-2

    Article  Google Scholar 

  88. Di Blasib C (1996) . Chem Eng Sci 51(7):1121. https://doi.org/10.1016/S0009-2509(96)80011-X

    Article  Google Scholar 

  89. Roberts A, Clough G (1963) . Symp (Int) Combust 9(1):158. https://doi.org/10.1016/S0082-0784(63)80022-3

    Article  Google Scholar 

  90. Di Blasi C, Signorelli G, Portoricco G (1999) . Ind Eng Chem Res 38(7):2571. https://doi.org/10.1021/ie980753i

    Article  Google Scholar 

  91. Bassilakis R, Carangelo R, Wójtowicz M (2001) . Fuel 80(12):1765. https://doi.org/10.1016/S0016-2361(01)00061-8

    Article  Google Scholar 

  92. Galgano A, Di Blasi C (2006) . Prog Comput Fluid Dyn 6(4/5):287. https://doi.org/10.1504/PCFD.2006.010037

    Article  Google Scholar 

  93. Galgano A, Di Blasi C (2003) . Ind Eng Chem Res 42(10):2101. https://doi.org/10.1021/ie020939o

    Article  Google Scholar 

  94. Di Blasi C, Branca C (2001) . Ind Eng Chem Res 40(23):5547. https://doi.org/10.1021/ie000997e

    Article  Google Scholar 

  95. Adams T (1980) . Combust Flame 39(3):225. https://doi.org/10.1016/0010-2180(80)90020-6

    Article  Google Scholar 

  96. Shin D, Choi S (2000) . Combust Flame 121(1-2):167. https://doi.org/10.1016/S0010-2180(99)00124-8

    Article  Google Scholar 

  97. Hagge MJ, Bryden KM (2002) . Chem Eng Sci 57(14):2811. https://doi.org/10.1016/S0009-2509(02)00167-7

    Article  Google Scholar 

  98. Porteiro J, Granada E, Collazo J, Patiño D, Morán JC (2007) . Energy Fuels 21(6):3151. https://doi.org/10.1021/ef0701891

    Article  Google Scholar 

  99. Porteiro J, Collazo J, Patiño D, Granada E, Moran Gonzalez JC, Míguez JL (2009) . Energy Fuels 23(2):1067. https://doi.org/10.1021/ef8008458

    Article  Google Scholar 

  100. Saastamoinen J, Richard J (1988) . In: Bridgwater AV, Kuester JL (eds) Res. Thermochem. Biomass Convers. Springer, Netherlands, pp 221–235. https://doi.org/10.1007/978-94-009-2737-7_18

  101. Johansson R, Thunman H, Leckner B (2007) . Combust Flame 149(1-2):49. https://doi.org/10.1016/j.combustflame.2006.12.009

    Article  Google Scholar 

  102. Seebauer V (1999) Experimentelle Untersuchung zur Pyrolyse von Kohle und Holz. Ph.D. thesis Graz University of Technology

  103. Rath J, Wolfingera MG, Steiner G, Krammer G, Barontini F, Cozzani V (2003) . Fuel 82 (1):81. https://doi.org/10.1016/S0016-2361(02)00138-2

    Article  Google Scholar 

  104. Branca C, Albano A, Di Blasi C (2005) . Thermochim Acta 429(2):133. https://doi.org/10.1016/j.tca.2005.02.030. http://linkinghub.elsevier.com/retrieve/pii/S0040603105001541

    Article  Google Scholar 

  105. Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I (2014) . Fuel 122:164. https://doi.org/10.1016/j.fuel.2014.01.027

    Article  Google Scholar 

  106. Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A, Law C (2012) . Prog Energy Combust Sci 38(4):468. https://doi.org/10.1016/j.pecs.2012.03.004

    Article  Google Scholar 

  107. Peters B (1999) . Combust Flame 116(1-2):297. https://doi.org/10.1016/S0010-2180(98)00048-0

    Article  Google Scholar 

  108. Thiele EW (1939) . Eng Ind Chem 31(7):916. https://doi.org/10.1021/ie50355a027

    Article  Google Scholar 

  109. Miltner M, Makaruk A, Harasek M, Friedl A (2006) . In: Witt PJ, Schwarz MP (eds) Proceedings of the 5th international conference on computational fluid dynamics in the process industries. CSIRO Australia, Clayton, pp 1–6

  110. Bruch C, Peters B, Nussbaumer T (2003) . Fuel 82(6):729. https://doi.org/10.1016/S0016-2361(02)00296-X

    Article  Google Scholar 

  111. Huttunen M, Kjäldman L, Saastamoinen J (2004) IFRF combustion journal (article number 200401)

  112. Galgano A, Di Blasi C, Horvat A, Sinai Y (2006) . Energy Fuels 20 (5):2223. https://doi.org/10.1021/ef060042u

    Article  Google Scholar 

  113. Arthur JR (1951) . Trans Faraday Soc 47:164. https://doi.org/10.1039/tf9514700164

    Article  Google Scholar 

  114. Pedersen K (2003) The product ratio of CO/CO2 in the oxidation of biomass char. Master thesis Technical University of Denmark

  115. Anca-Couce A, Sommersacher P, Shiehnejadhesar A, Mehrabian R, Hochenauer C, Scharler R (2017) . Energy Procedia 120:238. https://doi.org/10.1016/j.egypro.2017.07.170

    Article  Google Scholar 

  116. Collazo J, Porteiro J, Patiño D, Granada E (2012) . Fuel 93:149. https://doi.org/10.1016/j.fuel.2011.09.044

    Article  Google Scholar 

  117. Ryan JS, Hallett WLH (2002) . Chem Eng Sci 57(18):3873. https://doi.org/10.1016/S0009-2509(02)00235-X

    Article  Google Scholar 

  118. Yang YB, Goh YR, Zakaria R, Nasserzadeh V, Swithenbank J (2002) . Waste Manage 22(4):369. https://doi.org/10.1016/S0956-053X(02)00019-3

    Article  Google Scholar 

  119. Thunman H, Leckner B (2002) . Proc Combust Inst 29(1):511. https://doi.org/10.1016/S1540-7489(02)80066-9

    Article  Google Scholar 

  120. Di Blasi C (1993) . Combust Sci Technol 90(5):315. https://doi.org/10.1080/00102209308907620

    Article  Google Scholar 

  121. Girgis E, Hallett WLH (2010) . Energy Fuels 24(3):1584. https://doi.org/10.1021/ef901206d

    Article  Google Scholar 

  122. Mahmoudi AH, Besseron X, Hoffmann F, Markovic M, Peters B (2016) . Chem Eng Sci 142:32. https://doi.org/10.1016/j.ces.2015.11.015

    Article  Google Scholar 

  123. Yang Y, Ryu C, Khor A, Yates N, Sharifi V, Swithenbank J (2005) . Fuel 84(16):2116. https://doi.org/10.1016/j.fuel.2005.04.023

    Article  Google Scholar 

  124. Yang YB, Newman R, Sharifi V, Swithenbank J, Ariss J (2007) . Fuel 86(1-2):129. https://doi.org/10.1016/j.fuel.2006.06.023

    Article  Google Scholar 

  125. Yang YB, Sharifi VN, Swithenbank J (2007) . Waste Manage 27(5):645. https://doi.org/10.1016/j.wasman.2006.03.014

    Article  Google Scholar 

  126. Bryden KM, Ragland KW (1996) . Energy Fuels 10(2):269. https://doi.org/10.1021/ef950193p

    Article  Google Scholar 

  127. Johansson R, Thunman H, Leckner B (2007) . Energy Fuels 21(3):1493. https://doi.org/10.1021/ef060500z

    Article  Google Scholar 

  128. Yang YB, Sharifi VN, Swithenbank J (2005) . Process Saf Environ Prot 83 (6):549. https://doi.org/10.1205/psep.04284

    Article  Google Scholar 

  129. Hermansson S, Thunman H (2011) . Combust Flame 158(5):988. https://doi.org/10.1016/j.combustflame.2011.01.022

    Article  Google Scholar 

  130. Ström H., Thunman H (2013) . Combust Flame 160(2):417. https://doi.org/10.1016/j.combustflame.2012.10.005

    Article  Google Scholar 

  131. Simsek E, Brosch B, Wirtz S, Scherer V, Krüll F (2009) . Powder Technol 193(3):266. https://doi.org/10.1016/j.powtec.2009.03.011

    Article  Google Scholar 

  132. Gómez MA, Porteiro J, Patiño D, Míguez JL (2014) . Fuel 117:716. https://doi.org/10.1016/j.fuel.2013.08.078

    Article  Google Scholar 

  133. Gómez MA, Porteiro J, Patiño D, Míguez JL (2015) . Energy Convers Manage 105:30. https://doi.org/10.1016/j.enconman.2015.07.059

    Article  Google Scholar 

  134. Gómez MA, Porteiro J, de La Cuesta D, Patiño D, Míguez JL (2016) . Fuel 184:987. https://doi.org/10.1016/j.fuel.2015.11.082

    Article  Google Scholar 

  135. Miljković B, Pešenjanski I, Vićević M (2013) . Fuel 104:351. https://doi.org/10.1016/j.fuel.2012.08.017

    Article  Google Scholar 

  136. Duffy NT, Eaton JA (2013) . Combust Flame 160(10):2204. https://doi.org/10.1016/j.combustflame.2013.04.015

    Article  Google Scholar 

  137. Yang YB, Nasserzadeh V, Goodfellow J, Swithenbank J (2003) . Chem Eng Res Des 81(2):221. https://doi.org/10.1205/026387603762878683

    Article  Google Scholar 

  138. Shiehnejadhesar A, Scharler R, Mehrabian R, Obernberger I (2015) . Fuel Process Technol 139:142. https://doi.org/10.1016/j.fuproc.2015.07.029

    Article  Google Scholar 

  139. Yang YB, Lim CN, Goodfellow J, Sharifi VN, Swithenbank J (2005) . Fuel 84(2-3):213. https://doi.org/10.1016/j.fuel.2004.09.002

    Article  Google Scholar 

  140. Peters B, Džiugys A, Hunsinger H, Krebs L (2005) . Chem Eng Sci 60(6):1649. https://doi.org/10.1016/j.ces.2004.11.004

    Article  Google Scholar 

  141. Gómez MA, Porteiro J, Patiño D, Míguez JL (2015) . Energy Convers Manage 101:666. https://doi.org/10.1016/j.enconman.2015.06.003

    Article  Google Scholar 

  142. Gómez MA, Porteiro J, de La Cuesta D, Patiño D, Míguez JL (2017) . Energy Convers Manage 140:260. https://doi.org/10.1016/j.enconman.2017.03.006

    Article  Google Scholar 

  143. Blander M, Milne TA, Dayton DC, Backman R, Blake D, Kühnel V, Linak W, Nordin A, Ljung A (2001) . Energy Fuels 15(2):344. https://doi.org/10.1021/ef0001181

    Article  Google Scholar 

  144. Nutalapati D, Gupta R, Moghtaderi B, Wall TF (2007) . Fuel Process Technol 88(11-12):1044. https://doi.org/10.1016/j.fuproc.2007.06.022

    Article  Google Scholar 

  145. Lindberg D, Backman R, Chartrand P, Hupa M (2013) . Fuel Process Technol 105:129. https://doi.org/10.1016/j.fuproc.2011.08.008

    Article  Google Scholar 

  146. Brunner T, Jöller M, Obernberger I, Frandsen FJ (2002) .. In: 12th European conference and technology exhibition on biomass for energy industry and climate projection

  147. Aspen Technology Inc Chemical process optimization software - chemical process design – aspen plus. http://www.aspentech.com/products/engineering/aspen-plus/

  148. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA (2016) . Calphad 54:35. https://doi.org/10.1016/j.calphad.2016.05.002

    Article  Google Scholar 

  149. Ross AB, Jones JM, Chaiklangmuang S, Pourkashanian M, Williams A, Kubica K, Andersson JT, Kerst M, Danihelka P, Bartle KD (2002) . Fuel 81(5):571. https://doi.org/10.1016/S0016-2361(01)00157-0

    Article  Google Scholar 

  150. Salzmann R, Nussbaumer T (2001) . Energy Fuels 15(3):575. https://doi.org/10.1021/ef0001383

    Article  Google Scholar 

  151. Glarborg P, Jensen AD, Johnsson JE (2003) . Prog Energy Combust Sci 29 (2):89. https://doi.org/10.1016/S0360-1285(02)00031-X

    Article  Google Scholar 

  152. Anca-Couce A, Sommersacher P, Evic N, Mehrabian R, Scharler R (2018) . Fuel 222:529. https://doi.org/10.1016/j.fuel.2018.03.003

    Article  Google Scholar 

  153. Yang YB, Sharifi VN, Swithenbank J, Ma L, Darvell LI, Jones JM, Pourkashanian M, Williams A (2008) . Energy Fuels 22(1):306. https://doi.org/10.1021/ef700305r

    Article  Google Scholar 

  154. Haberle I, Skreiberg Ø, Łazar J, Haugen NEL (2017) . Prog Energy Combust Sci 63:204. https://doi.org/10.1016/j.pecs.2017.07.004

    Article  Google Scholar 

  155. Lu H, Robert W, Peirce G, Ripa B, Baxter LL (2008) . Energy Fuels 22(4):2826. https://doi.org/10.1021/ef800006z

    Article  Google Scholar 

  156. Ström H, Thunman H (2013) Appl Energy. https://doi.org/10.1016/j.apenergy.2012.12.057

  157. Park WC, Atreya A, Baum HR (2010) . Combust Flame 157(3):481. https://doi.org/10.1016/j.combustflame.2009.10.006

    Article  Google Scholar 

  158. Di Blasi C (2002) . AIChE J 48(10):2386. https://doi.org/10.1002/aic.690481028

    Article  Google Scholar 

  159. Park W (2008) A study of pyrolysis of charring materials and its application to fire safety and biomass utilization in mechanical engineering. Ph.D. thesis, University of Michigan, Ann Arbor

  160. Capart R, Khezami L, Burnham AK (2004) . Thermochim Acta 417 (1):79. https://doi.org/10.1016/j.tca.2004.01.029

    Article  Google Scholar 

  161. Várhegyi G, Antal MJ, Szekely T, Szabó P (1989) . Energy Fuels 3 (3):329. https://doi.org/10.1021/ef00015a012

    Article  Google Scholar 

  162. Chan RWC, Krieger BB (1981) . J Appl Polym Sci 26(5):1533. https://doi.org/10.1002/app.1981.070260510

    Article  Google Scholar 

  163. Kilzer JF, Broido A (1965) . Pyrodynamics 2:151

    Google Scholar 

  164. Bennadji H, Smith K, Shabangu S, Fisher EM (2013) . Energy Fuels 27(3):1453. https://doi.org/10.1021/ef400079a

    Article  Google Scholar 

  165. Gauthier G, Melkior T, Grateau M, Thiery S, Salvador S (2013) . J Anal Appl Pyrolysis 104:521. https://doi.org/10.1016/j.jaap.2013.05.017

    Article  Google Scholar 

  166. Norinaga K, Shoji T, Kudo S, Hayashi JI (2013) . Fuel 103:141. https://doi.org/10.1016/j.fuel.2011.07.045

    Article  Google Scholar 

  167. Anca-Couce A, Sommersacher P, Scharler R (2017) . J Anal Appl Pyrol 127:411. https://doi.org/10.1016/j.jaap.2017.07.008

    Article  Google Scholar 

  168. Di Blasi C, Branca C, Santoro A, Gonzalez Hernandez E (2001) . Combust Flame 124(1-2):165. https://doi.org/10.1016/S0010-2180(00)00191-7

    Article  Google Scholar 

  169. Adánez J, Gayán P, de Diego LF, García-Labiano F, Abad A (2003) . Ind Eng Chem Res 42(5):987. https://doi.org/10.1021/ie020605z

    Article  Google Scholar 

  170. Thunman H, Niklasson F, Johnsson F, Leckner B (2001) . Energy Fuels 15(6):1488. https://doi.org/10.1021/ef010097q

    Article  Google Scholar 

  171. Prakash N, Karunanithi T (2009) . Asian J Sci Res 2(1):1. https://doi.org/10.3923/ajsr.2009.1.27

    Article  Google Scholar 

  172. Scharler R (2001) Entwicklung und Optimierung von BIomasse-Rostfeuerungen durch CFD-Analyse. Ph.D. thesis Graz, University of Technology

  173. Scharler R, Obernberger I (2000) . In: Reis A (ed) Industrial furnaces and boilers. INFUB, Rio Tinto, Portugal, pp 1–17

  174. Buchmayr M, Gruber J, Hargassner M, Hochenauer C (2016) . Energy Convers Manage 115:32. https://doi.org/10.1016/j.enconman.2016.02.038

    Article  Google Scholar 

  175. Buchmayr M, Gruber J, Hargassner M, Hochenauer C (2016) . Biomass Bioenergy 95:146. https://doi.org/10.1016/j.biombioe.2016.10.004

    Article  Google Scholar 

  176. Lee DH, Yang H, Yan R, Liang DT (2007) . Fuel 86(3):410. https://doi.org/10.1016/j.fuel.2006.07.020

    Article  Google Scholar 

  177. Paviet F, Chazarenc F, Tazerout M (2009) Int J Chem React Eng, 7(1), https://doi.org/10.2202/1542-6580.2089

  178. Nikoo MB, Mahinpey N (2008) . Biomass Bioenergy 32(12):1245. https://doi.org/10.1016/j.biombioe.2008.02.020

    Article  Google Scholar 

  179. Doherty W, Reynolds A, Kennedy D (2009) . Biomass Bioenergy 33(9):1158. https://doi.org/10.1016/j.biombioe.2009.05.004

    Article  Google Scholar 

  180. Galletti C, Giomo V, Giorgetti S, Leoni P, Tognotti L (2016) . Appl Therm Eng 96:372. https://doi.org/10.1016/j.applthermaleng.2015.11.085

    Article  Google Scholar 

  181. Fatehi M, Kaviany M (1994) . Combust Flame 99(1):1. https://doi.org/10.1016/0010-2180(94)90078-7

    Article  Google Scholar 

  182. Yang Y, Sharifi V, Swithenbank J (2004) . Fuel 83(11-12):1553. https://doi.org/10.1016/j.fuel.2004.01.016

    Article  Google Scholar 

  183. Menghini D, Marra FS (2008) .. In: 16th European Biomass Conference & Exhibition, pp 1407–1414

  184. Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I (2010) . Biomass Bioenergy 34 (4):417. https://doi.org/10.1016/j.biombioe.2009.12.005

    Article  Google Scholar 

  185. Ansys fluent theory guide, release 15.0. http://www.ansys.com

  186. Ryu C, Shin D, Choi S (2002) . J Air Waste Manage Assoc 52(2):189. https://doi.org/10.1080/10473289.2002.10470769

    Article  Google Scholar 

  187. Yin C, Rosendahl L, Kær SK, Clausen S, Hvid SL, Hille T (2008) . Energy Fuels 22(2):1380. https://doi.org/10.1021/ef700689r

    Article  Google Scholar 

  188. van der Lans R, Pedersen LT, Jensen A, Glarborg P, Dam-Johansen K (2000) . Biomass Bioenergy 19(3):199. https://doi.org/10.1016/S0961-9534(00)00033-7

    Article  Google Scholar 

  189. Kær SK (2005) . Biomass Bioenergy 28(3):307. https://doi.org/10.1016/j.biombioe.2004.08.017

    Article  Google Scholar 

  190. Kær SK, Rosendahl L, Baxter L (2006) . Fuel 85(5-6):833. https://doi.org/10.1016/j.fuel.2005.08.016

    Article  Google Scholar 

  191. Hermansson S, Thunman H (2011) . Energy Fuels 25(4):1387. https://doi.org/10.1021/ef101473b

    Article  Google Scholar 

  192. Kær SK (2004) . Fuel 83(9):1183. https://doi.org/10.1016/j.fuel.2003.12.003

    Article  Google Scholar 

  193. Venturini P, Borello D, Iossa C, Lentini D, Rispoli F (2010) . Energy 35(7):3008. https://doi.org/10.1016/j.energy.2010.03.038

    Article  Google Scholar 

  194. Yu Z, Ma X, Liao Y (2010) . Renew Energy 35(5):895. https://doi.org/10.1016/j.renene.2009.10.006

    Article  Google Scholar 

  195. Borello D, Venturini P, Rispoli F, Rafael SG (2013) . Appl Energy 101:413. https://doi.org/10.1016/j.apenergy.2012.04.031

    Article  Google Scholar 

  196. Buczyński R., Weber R, Szlek A, Nosek R (2012) . Energy Fuels 26 (8):4767. https://doi.org/10.1021/ef300676r

    Article  Google Scholar 

  197. Kær SK (2001) Numerical investigation of ash deposition in straw-fired boilers - using CFD as the framework for slagging and fouling predictions. Ph.D. thesis, Aalborg University, Denmark

  198. Thunman H, Leckner B (2005) . Proc Combust Inst 30(2):2939. https://doi.org/10.1016/j.proci.2004.07.010

    Article  Google Scholar 

  199. Peters B, Bruch C (2001) . Chemosphere 42(5-7):481. https://doi.org/10.1016/S0045-6535(00)00220-4

    Article  Google Scholar 

  200. Saidi MS, Hajaligol MR, Mhaisekar A, Subbiah M (2007) . Appl Math Model 31(9):1970. https://doi.org/10.1016/j.apm.2006.08.003

    Article  Google Scholar 

  201. Hettel M, Seidelt S, Haußmann M, Bockhorn H (2011) .. In: 25. Deutscher Flammentag, VDI-Berichte, vol 2119 (VDI-Verl., Düsseldorf). VDI-Berichte, pp 87–93

  202. Kurz D, Schnell U, Scheffknecht G (2012) . Combust Theor Model 16(2):251. https://doi.org/10.1080/13647830.2011.610903

    Article  Google Scholar 

  203. Kurz D, Schnell U, Scheffknecht G (2011) .. In: 25. Deutscher Flammentag, VDI-berichte, vol 2119 (VDI-verl., Düsseldorf). VDI-Berichte, pp 183–188

  204. Bruch C (2001) Beitrag zur Modellierung der Festbettverbrennung in automatischen Holzfeuerungen. Ph.D. thesis ETH Zürich

  205. Mehrabian R, Scharler R, Weissinger A, Obernberger I (2010) .. In: Proceedings of the 18th European biomass conference & exhibition, ed. by ETA-renewable energies (Italy)

  206. Peters B, Džiugys A, Navakas R (2010) .. In: Modern building materials, structures and techniniques

  207. Peters B (2011) .. In: 25. Deutscher Flammentag, VDI-Berichte, vol 2119 (VDI-Verl., Düsseldorf). VDI-Berichte, pp 147–152

  208. Brosch B, Wirtz S, Scherer V, Waldner MH (2011) .. In: 25. Deutscher Flammentag, VDI-Berichte, vol 2119 (VDI-Verl., Düsseldorf). VDI-Berichte, pp 159–166

  209. Peters B, Besseron X, Estupinan A, Hoffmann F, Michael M, Mahmoudi A (2014) Industrial combustion (Article Number 201402)

  210. Miltner M, Miltner A, Harasek M, Friedl A (2007) . Appl Therm Eng 27(7):1138. https://doi.org/10.1016/j.applthermaleng.2006.02.048

    Article  Google Scholar 

  211. Collazo J, Porteiro J, Míguez JL, Granada E, Gómez MA (2012) . Energy Convers Manage 64:87. https://doi.org/10.1016/j.enconman.2012.05.020

    Article  Google Scholar 

  212. Buczyński R, Weber R, Szlek A (2015) . J Energy Inst 88(1):53. https://doi.org/10.1016/j.joei.2014.04.006

    Article  Google Scholar 

  213. Poinsot T, Veynante D (2001) Theoretical and numerical combustion. Edwards, Philadelphia, PA

  214. Trisjono P, Pitsch H (2015) . Flow, Turbul Combust 95(2-3):231. https://doi.org/10.1007/s10494-015-9645-x

    Article  Google Scholar 

  215. Gicquel L, Staffelbach G, Poinsot T (2012) . Prog Energy Combust Sci 38 (6):782. https://doi.org/10.1016/j.pecs.2012.04.004

    Article  Google Scholar 

  216. Ma L, Roekaerts D (2016) . Combust Flame 165:402. https://doi.org/10.1016/j.combustflame.2015.12.025

    Article  Google Scholar 

  217. Jones W, Launder B (1972) . Int J Heat Mass Transfer 15(2):301. https://doi.org/10.1016/0017-9310(72)90076-2

    Article  Google Scholar 

  218. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) . Comput Fluids 24(3):227. https://doi.org/10.1016/0045-7930(94)00032-T

    Article  Google Scholar 

  219. Yakhot V, Orszag SA (1986) . J Sci Comput 1(1):3. https://doi.org/10.1007/BF01061452

    Article  MathSciNet  Google Scholar 

  220. Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) . Phys Fluids A 4(7):1510. https://doi.org/10.1063/1.858424

    Article  MathSciNet  Google Scholar 

  221. Han Z, Reitz RD (1995) . Combust Sci Technol 106(4-6):267. https://doi.org/10.1080/00102209508907782

    Article  Google Scholar 

  222. Patel VC, Rodi W, Scheuerer G (1985) . AIAA J 23(9):1308. https://doi.org/10.2514/3.9086

    Article  MathSciNet  Google Scholar 

  223. Laurien E, Oertel H (2011) Numerische Strömungsmechanik: Grundgleichungen und Modelle – Lösungsmethoden – Qualität und Genauigkeit, 4th edn. (Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH Wiesbaden, Wiesbaden). https://doi.org/10.1007/978-3-8348-8121-2

  224. Knaus H, Richter S, Unterberger S, Schnell U, Maier H, Hein K (2000) . Exp Thermal Fluid Sci 21(1-3):99. https://doi.org/10.1016/S0894-1777(99)00059-X

    Article  Google Scholar 

  225. Farokhi M, Birouk M, Tabet F (2017) . Energy Convers Manage 143:203. https://doi.org/10.1016/j.enconman.2017.03.086

    Article  Google Scholar 

  226. Magnussen BF, Hjertager BH (1977) . Symp (Int) Combust 16(1):719. https://doi.org/10.1016/S0082-0784(77)80366-4

    Article  Google Scholar 

  227. Magnussen BF (1981) .. In: Aerospace sciences meetings, ed by AIAA American institute of aeronautics and astronautics, DOI https://doi.org/10.2514/6.1981-42, (to appear in print)

  228. Pope SB (1997) . Combust Theory Modell 1(1):41. https://doi.org/10.1088/1364-7830/1/1/006

    Article  MathSciNet  Google Scholar 

  229. Shiehnejadhesar A, Mehrabian R, Scharler R, Goldin GM, Obernberger I (2014) . Fuel 126:177. https://doi.org/10.1016/j.fuel.2014.02.040. http://linkinghub.elsevier.com/retrieve/pii/S0016236114001793

    Article  Google Scholar 

  230. Veynante D, Vervisch L (2002) . Prog Energy Combust Sci 28(3):193. https://doi.org/10.1016/S0360-1285(01)00017-X

    Article  Google Scholar 

  231. Peters N (1986) .. In: 21st Symposuim (international) on combustion, vol 21, ed. by Combustion Institute, vol 21, pp 1231–1250

  232. Kim S, Shin D, Choi S (1996) . Combust Flame 106(3):241. https://doi.org/10.1016/0010-2180(95)00190-5

    Article  Google Scholar 

  233. Tabet F, Fichet V, Plion P (2016) . J Energy Inst 89(2):199. https://doi.org/10.1016/j.joei.2015.02.003

    Article  Google Scholar 

  234. Yin C, Rosendahl LA, Clausen S, Hvid SL (2012) . Energy 41(1):473. https://doi.org/10.1016/j.energy.2012.02.050

    Article  Google Scholar 

  235. Westbrook CK, Dryer FL (1981) . Combust Sci Technol 27(1-2):31. https://doi.org/10.1080/00102208108946970

    Article  Google Scholar 

  236. Jones WP, Lindstedt RP (1988) . Combust Flame 73(3):233. https://doi.org/10.1016/0010-2180(88)90021-1

    Article  Google Scholar 

  237. Athanasios N, Nikolaos N, Nikolaos M, Panagiotis G, Kakaras E (2015) . Fuel Process Technol 137:75. https://doi.org/10.1016/j.fuproc.2015.04.010

    Article  Google Scholar 

  238. Yin C, Kær SK, Rosendahl L, Hvid SL (2010) . Bioresour Technol 101(11):4169. https://doi.org/10.1016/j.biortech.2010.01.018

    Article  Google Scholar 

  239. Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman CT, Hanson R, Song S, Gardiner WC, Lissianski V, Qin Z GRI-Mech 3.0. http://www.me.berkeley.edu/gri-mech/

  240. Skreiberg Ø, Kilpinen P, Glarborg P (2004) . Combust Flame 136 (4):501. https://doi.org/10.1016/j.combustflame.2003.12.008

    Article  Google Scholar 

  241. Løvås T, Houshfar E, Bugge M, Skreiberg Ø (2013) . Energy Fuels 27(11):6979. https://doi.org/10.1021/ef400949h

    Article  Google Scholar 

  242. Zahirović S, Scharler R, Kilpinen P, Obernberger I (2011) . Combust Theory Modell 15(5):645. https://doi.org/10.1080/13647830.2011.557441

    Article  Google Scholar 

  243. Debiagi PEA, Gentile G, Pelucchi M, Frassoldati A, Cuoci A, Faravelli T, Ranzi E (2016) . Biomass Bioenergy 93:60. https://doi.org/10.1016/j.biombioe.2016.06.015

    Article  Google Scholar 

  244. Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF (1998) . Combust Flame 114(1-2):192. https://doi.org/10.1016/S0010-2180(97)00275-7

    Article  Google Scholar 

  245. Richter H, Howard JB (2002) . Phys Chem Chem Phys 4(11):2038. https://doi.org/10.1039/b110089k

    Article  Google Scholar 

  246. Chandrasekhar S (1960) Radiative transfer, dover ed., 1. publ. in 1960, an unabridged and slightly rev. version of the work orig. publ. 1950 edn. Dover Publications, New York

    Google Scholar 

  247. Klason T, Bai XS, Bahador M, Nilsson TK, Sundén B (2008) . Fuel 87(10-11):2141. https://doi.org/10.1016/j.fuel.2007.11.016

    Article  Google Scholar 

  248. Modest MF (2013) Radiative heat transfer, 3rd. Academic Press, New York. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10661889

  249. Williams A, Jones JM, Ma L, Pourkashanian M (2012) . Prog Energy Combust Sci 38 (2):113. https://doi.org/10.1016/j.pecs.2011.10.001. http://linkinghub.elsevier.com/retrieve/pii/S0360128511000530

    Article  Google Scholar 

  250. Zhou H, Jensen A, Glarborg P, Kavaliauskas A (2006) . Fuel 85(5-6):705. https://doi.org/10.1016/j.fuel.2005.08.038

    Article  Google Scholar 

  251. Glarborg P, Miller JA, Ruscic B, Klippenstein SJ (2018) . Prog Energy Combust Sci 67:31. https://doi.org/10.1016/j.pecs.2018.01.002

    Article  Google Scholar 

  252. Zahirović S, Scharler R, Kilpinen P, Obernberger I (2010) . Combust Theory Modell 15(1):61. https://doi.org/10.1080/13647830.2010.524312

    Article  Google Scholar 

  253. Niu Y, Tan H, Hui S (2016) . Prog. Energy Combust. Sci 52:1. https://doi.org/10.1016/j.pecs.2015.09.003, http://linkinghub.elsevier.com/retrieve/pii/S0360128515300216

    Article  Google Scholar 

  254. Jöller M, Brunner T, Obernberger I (2007) . Fuel Process Technol 88 (11-12):1136. https://doi.org/10.1016/j.fuproc.2007.06.013

    Article  Google Scholar 

  255. Niu Y, Wang S, Shaddix CR, Hui S (2016) . Combust Flame 173:195. https://doi.org/10.1016/j.combustflame.2016.08.021

    Article  Google Scholar 

  256. Brookes S, Moss J (1999) . Combust Flame 116(4):486. https://doi.org/10.1016/S0010-2180(98)00056-X

    Article  Google Scholar 

  257. Schütz D (2012) Numerische simulation und messtechnische evaluierung der schadstoffemissionen aus stückholzfeuerungen. Ph.D. thesis, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2012/7062/

  258. Sènèchal U (2013) Holzverbrennung in Kaminöfen mit Keramikfilter - experimentelle Untersuchungen und mathematische Modellierung. Ph.D. thesis, TU Dresden

  259. Djurović D, Nemoda S, Dakić D, Adzić M, Repić B (2012) . Int J Heat Mass Transfer 55 (15-16):4312. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.079

    Article  Google Scholar 

  260. CRECK Modeling group. http://creckmodeling.chem.polimi.it

  261. Klason T, Bai XS (2007) . Fuel 86(10-11):1465. https://doi.org/10.1016/j.fuel.2006.11.022

    Article  Google Scholar 

  262. Rezeau A, Ramírez JA, Díez LI, Royo J (2012) . Comput Fluids 69:45. https://doi.org/10.1016/j.compfluid.2012.08.024

    Article  Google Scholar 

  263. Bui-Pham M, Seshadri K (1991) . Combust Sci Technol 79(4-6):293. https://doi.org/10.1080/00102209108951771

    Article  Google Scholar 

Download references

Funding

This research work is kindly supported by the German Federal Ministry of Food and Agriculture (BMEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Dernbecher.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dernbecher, A., Dieguez-Alonso, A., Ortwein, A. et al. Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conv. Bioref. 9, 129–182 (2019). https://doi.org/10.1007/s13399-019-00370-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00370-z

Keywords

Navigation