Skip to main content
Log in

Selective transformation of carbohydrates into HMF promoted by carboxylic acids modified ZrMo mixed oxides

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

ZrMo mixed oxides modified by a series of low-cost monofunctional carboxylic acids including stearic acid, palmitic acid, myristic acid, and lauric acid were prepared and were characterized using TG analysis, XRD, FT-IR, NH3-TPD, and SEM techniques. These strong solid acids were evaluated as heterogeneous catalysts with porous property for the conversion of carbohydrates to 5-hydroxymethylfurfural (HMF) by oil heating rather than using microwave heating, in the aim of facilitating the industrial feasibility of this catalytic process and discussing the relation between surface acidity and reactivity in carbohydrates to HMF conversion. Under the optimal reaction conditions, moderate yields of HMF could be achieved from fructose, glucose, sucrose, and cellulose, and the strong solid catalysts can be recycled for seven times with no significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HMF:

5-Hydroxymentylfurfural

SA:

Stearic acid

PA:

Palmitic acid

MA:

Myristic acid

LA:

Lauric acid

References

  1. Perlack RD, Wright LL, Turhollow AF, Granham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, U.S. Department of Energy (DOE), U.S. Department of Agriculture (USDA). http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

  2. Shabani N, Akhtari S, Sowlati T (2013) Value chain optimization of forest biomass for bioenergy production: a review. Renew Sustain Energ Rev 23:299–311

    Article  Google Scholar 

  3. Yang Y, Zhang P, Zhang W, Tian Y, Zheng Y, Wang L (2010) Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew Sustain Energ Rev 14:3050–3058

    Article  Google Scholar 

  4. Yang F, Liu Q, Yue M, Bai X, Du Y (2011) Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Chem Commun 47:4469–4471

    Article  Google Scholar 

  5. Dutta S, De S, Saha B (2013) Advances in biomass transformation to 5-hydroxymethylfurfural and mechanistic aspects. Biomass Bioenergy 55:355–369

    Article  Google Scholar 

  6. Asghari FA, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind Eng Chem Res 45:2163–2173

    Article  Google Scholar 

  7. Zhao HB, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  Google Scholar 

  8. Li H, Chang F, Zhang Y, Hu D, Jin L, Song B, Yang S (2012) Recent progress towards transition metal-catalyzed direct conversion of cellulose to 5-hydroxymethylfurfural. Curr Catal 1:221–232

    Article  Google Scholar 

  9. Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2−/ZrO2 and SO4 2−/ZrO2–Al2O3 solid acid catalysts. Catal Commun 10:1558–1563

    Article  Google Scholar 

  10. Yang L, Liu Y, Ruan R (2011) Hydrolysis of glucose to 5-hydroxymethylfurfural. Adv Mater Res 335–336:1448–1453

    Article  Google Scholar 

  11. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072

    Article  Google Scholar 

  12. Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50:7985–7989

    Article  Google Scholar 

  13. Dutta S, De S, Patra AK, Sasidharan M, Bhaumik A, Saha B (2011) Microwave-assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl Catal A: Gen 409–410:133–139

    Article  Google Scholar 

  14. Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal Commun 10:1771–1775

    Article  Google Scholar 

  15. Richel A, Laurent P, Wathelet B, Wathelet JP, Paquot M (2011) Current perspectives on microwave-enhanced reactions of monosaccharides promoted by heterogeneous catalysts. Catal Today 67:141–147

    Article  Google Scholar 

  16. Bergamelli F, Iannelli M, Marafie JA, Moseley JD (2010) A commercial continuous flow microwave reactor evaluated for scale-up. Org Process Res Dev 14:926–930

    Article  Google Scholar 

  17. Kappe CO (2008) Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37:1127–1139

    Article  Google Scholar 

  18. Moseley JD (2009) Microwave synthesis in process chemistry method, scale, and scope. Chim Oggi/Chem Today 27:6–10

    Google Scholar 

  19. Kuo IJ, Suzuki N, Yamauchi Y, Wu KCW (2013) Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Adv 3:2028–2034

    Article  Google Scholar 

  20. Qi X, Watanabe M, Aida TM, Smith RL Jr (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249

    Article  Google Scholar 

  21. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel 89:2873–2880

    Article  Google Scholar 

  22. Asghari FA, Yoshida H (2006) Dehydration of fructose to 5-hydroxymethylfurfural in subcritical water over heterogeneous zirconium phosphate catalysts. Carbohydr Res 341:2379–2387

    Article  Google Scholar 

  23. Dedsuksophon W, Faungnawakij K, Champreda V, Laosiripojana N (2011) Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3-ZrO2 in a single reactor. Bioresour Technol 102:2040–2046

    Article  Google Scholar 

  24. Zhang H, Wu S, Zhang J, Li B (2012) Production of furans from pulp sheet over sulfated solid acid catalysts. Bioresources 7:4531–4544

    Google Scholar 

  25. Zeng W, Cheng D, Chen F, Zhan X (2009) Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water. Catal Lett 133:221–226

    Article  Google Scholar 

  26. Papp J, Soled S, Dwight K, Wold A (1994) Surface acidify and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 phatocatalysts. Chem Mater 6:496–500

    Article  Google Scholar 

  27. Afanasiev P, Geantet C, Breysse M, Coudurier G, Vedrine JC (1994) Influence of preparation method on the acidity of MoO3(WO3)/ZrO2 catalysts. J Chem Soc Faraday Trans 90:193–202

    Article  Google Scholar 

  28. Miyata H, Tokuda S, Ono T, Ohno T, Hatayama F (1990) Infrared, laser-Raman, and X-ray diffraction investigation of MoO3/ZrO2 and the oxidation of (Z)-but-2-ene. J Chem Soc Faraday Trans 86:2291–2295

    Article  Google Scholar 

  29. Zhang R, Jagiello J, Hu JF, Huang ZQ, Shwarz JA (1992) Effect of WO3 loading on the surface acidity of WO3/Al2O3 composite oxides. Appl Catal A: Gen 84:123–139

    Article  Google Scholar 

  30. Matsuoka Y, Niwa M, Murakami Y (1990) Morphology of molybdena supported on various oxides and its activity for methanol oxidation. J Phys Chem 94:1477–1482

    Article  Google Scholar 

  31. Lin H (2013) Catalytic process for conversion of biomass into hydrocarbon fuels. US20130079566A1

  32. Takenaka S, Sato S, Takahashi R, Sodesawa T (2003) Mesoporous MgO and Ni-MgO prepared by using carboxylic acids. Phys Chem Chem Phys 5:4968–4973

    Article  Google Scholar 

  33. Takenaka S, Takahashi R, Sato S, Sodesawa T, Matsumoto F, Yoshida S (2003) Pore size control of mesoporous SnO2 prepared by using stearic acid. Microporous Mesoporous Mater 59:123–131

    Article  Google Scholar 

  34. Van Cantfort O, Michaux B, Pirard R, Pirard JP, Lecloux AJ (1997) Synthesis and characterization of monodisperse spherical zirconia particles. J Sol–gel. Sci Technol 8:207–211

    Google Scholar 

  35. Sohn JR, Kwon SH, Shin DC (2007) Spectroscopic studies on NiO supported on ZrO2 modified with MoO3 for ethylene dimerization. Appl Catal A: Gen 317:216–225

    Article  Google Scholar 

  36. Sarkar A, Pramanik S, Achariya A, Pramanik P (2008) A novel sol–gel synthesis of mesoporous ZrO2-MoO3/WO3 mixed oxides. Microporous Mesoporous Mater 115:426–431

    Article  Google Scholar 

  37. Wu M, Li CL, Zhang J, Miao CC, Zheng YP, Sun YM (2012) ZrO2-MoO3 for the acetalization of 1,3-propanediol from dilute solutions. Ind Eng Chem Res 51:6304–6309

    Article  Google Scholar 

  38. Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid–base property determined by TPD measurement. Appl Catal A: Gen 295:150–156

    Article  Google Scholar 

  39. Qi X, Watanabe M, Aida TM, Smith RL Jr (2012) Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresour Technol 109:224–228

    Article  Google Scholar 

  40. Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the International Science & Technology Cooperation Program of China (2010DFB60840), Key Science and Technology Project of Guizhou Province (no. 20076004), Social Development S&T Program (no. SZ-[2009] 3011), and National Key Technology R&D Program (2006BAD07A12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, Q., Liu, J. et al. Selective transformation of carbohydrates into HMF promoted by carboxylic acids modified ZrMo mixed oxides. Biomass Conv. Bioref. 4, 59–66 (2014). https://doi.org/10.1007/s13399-013-0092-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0092-4

Keywords

Navigation