Skip to main content
Log in

On a comparison method for a parabolic–elliptic system of chemotaxis with density-suppressed motility and logistic growth

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We consider a parabolic–elliptic system of partial differential equations with chemotaxis and logistic growth given by the system

$$\begin{aligned} \left\{ \begin{array}{l} u_t -\Delta (u \gamma (v))= \mu u(1-u), \\ - \Delta v +v=u, \end{array} \right. \end{aligned}$$

under Neumann boundary conditions and appropriate initial data in a bounded and regular domain \(\Omega \) of \({{\mathbb {R}}}^N\) (for \(N \ge 1)\), where \(\gamma \in C^3([0, \infty ))\) and satisfies \(\gamma (s) > 0\), \(\gamma ^{\prime }(s) \le 0\), \(\gamma ^{\prime \prime } (s) \ge 0\), \(\gamma ^{\prime \prime \prime }(s) \le 0\) for any \(s \ge 0\)

$$\begin{aligned}{} & {} -2 \gamma ^{\prime }(s) + \gamma ^{\prime \prime }(s)s \le \mu _0< \mu \\{} & {} \frac{[\gamma ^{\prime }(s)]^2}{\gamma (s)} \le c, \quad \text{ for } \text{ any } s \in [0, \infty ). \end{aligned}$$

We obtain the global existence and uniqueness of bounded in time solutions and the following asymptotic behavior

$$\begin{aligned} \Vert u- 1\Vert _{L^{\infty }(\Omega )} +\Vert v- 1\Vert _{L^{\infty }(\Omega )} \rightarrow 0, \quad \text{ when } t \rightarrow +\infty . \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Yoon, C.: Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing. Nonlinearity 32(4), 1327 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccardo, L., Orsina, L.: Sublinear elliptic systems with a convection term. Commun. Partial Differ. Equ. 45(7), 690–713 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conway, E., Smoller, J.: A comparison technique for systems of reaction-diffusion equations. Commun. Partial Differ. Equ. 2, 679–691 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Díaz, J.I., Nagai, T.: Symmetrization in a parabolic-elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5(2), 659–680 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Díaz, J.I., Nagai, T., Rakotoson, J.M.: Symmetrization techniques on unbounded domains: application to a Chemotaxis system on \(R^N\). J. Differ. Equ. 145(1), 156–183 (1998)

    Article  MATH  Google Scholar 

  7. Fife, P., Tang, M.M.: Comparison principles for reaction-diffusion systems: irregular comparison functions and applications to questions of stability and speed of propagation of disturbances. J. Differ. Equ. 40, 168–185 (1981)

    Article  MATH  Google Scholar 

  8. Friedman, A., Tello, J.I.: Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. Appl. 272, 138–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, X., Tang, L.H., Liu, C., Huang, J.D., Hwa, T., Lenz, P.: Stripe formation in bacterial system with density-suppressed motility. Phys. Rev. Lett. 108, 198102 (2012)

    Article  Google Scholar 

  10. Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. Nonlinear Differ. Equ. Appl. 28(2), article number 16 (2021)

  11. Fujie, K., Jiang, J.: Global existence for a kinetic model of pattern formation with density-suppressed motilities. J. Differ. Equ. 269(6), 5338–5378 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fujie, K., Jiang, J.: Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities. Acta Appl. Math. 176, article number 3 (2021)

  13. Fujie, K., Senba, T.: Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions. (Preprint)

  14. Fujie, K., Senba, T.: Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions. (Preprint)

  15. Galakhov, E., Salieva, O., Tello, J.I.: On a parabolic-elliptic system with chemotaxis and logistic type growth. J. Differ. Equ. 261(9), 4631–4647 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    MATH  Google Scholar 

  17. Hillen, T., Painter, K.J.: A users guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math.-Verein. 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Horstmann, D.: Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21, 231–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, J.: Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel model with signal-dependent motilities for local sensing chemotaxis. Preprint (2021)

  21. Jiang, Jie: Laurencçot, Philippe: Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility. J. Differ. Equ. 299, 513–541 (2021)

    Article  MATH  Google Scholar 

  22. Jin, H.Y., Kim, Y.J., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78(3), 1632–1657 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keller, E.F., Segel, L.A.: A model for chemotaxis. J. Theoret. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  25. Kang, K., Stevens, A.: Blowup and global solutions in a chemotaxis-growth system. Nonlinear Anal. Theory Methods Appl. 135, 57–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Pub. Co., River Edje (1996)

    Book  MATH  Google Scholar 

  27. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  28. Liu, C., Fu, X., Liu, L., Ren, X., Chau, C.K., Li, S., Xiang, L., Zeng, H., Chen, G., Tang, L.H., Lenz, P., Cui, X., Huang, W., Hwa, T., Huang, J.D.: Sequential establishment of stripe patterns in an expanding cell population. Science 334(6053), 238–241 (2011)

  29. Pao, C.V.: Comparison methods and stability analysis of reaction-diffusion systems. In: Comparison Methods and Stability Theory. Lecture Notes in Pure and Applications and Mathematics, vol. 162, pp. 277–292. Dekker, New York (1994)

  30. Negreanu, M., Tello, J.I.: On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discret. Contin. Dyn. Syst. Ser. B 18(10), 2669–2688 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Negreanu, M., Tello, J.I.: On a parabolic-ODE system of chemotaxis. Discret. Contin. Dyn. Syst. S 13(2), 279–292 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Salako, R.B., Shen, W.: Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on \({{\mathbb{R} }}^N\). J. Differ. Equ. 262(11), 5635–5690 (2017)

    Article  MATH  Google Scholar 

  33. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-especies chemotaxis model. J. Math. Biol. 68(7), 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, Y.S., Winkler, M.: Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math. Mod. Methods Appl. Sci. 27, 1645–1683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Für Angew. Math. Phys. 69(2), Art 40 (2018)

  38. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384(2), 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Xu, X.: Steady states and pattern formation of the density-suppressed motility model. IMA J. Appl. Math. 86, 577–603 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I want to express my deep gratitude to Professor Ildefonso Díaz for his advises, support, comments and for sharing his knowledge during the last three decades. Thank you very much Ildefonso, it is always a great pleasure to learn from you.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.Ignacio Tello.

Additional information

Dedicated to Professor J. Ildefonso Díaz on the Occasion of his 70th Birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by Ministerio de Ciencia e Innovación, Spain, under Grant number MTM2017-83391-P.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tello, J. On a comparison method for a parabolic–elliptic system of chemotaxis with density-suppressed motility and logistic growth. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 109 (2022). https://doi.org/10.1007/s13398-022-01255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-022-01255-z

Keywords

Mathematics Subject Classification

Navigation