Skip to main content
Log in

Abstract

This paper is devoted to survey the rich theory, some of it quite recent, concerning the divisibility properties, of various kinds, of random r-tuples of positive integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Usually attributed to Dirichlet [37]. But also to Cesàro [22, 23], Mertens [74], Sylvester [88], etc. See an interesting historical account in [1].

  2. These asymptotic estimates of moments of gcd are valid also for non-integer q, but we limit ourselves to the integer case.

  3. A completely analogous characterization holds in the k-dimensional lattice; see Theorem 2 in [56].

References

  1. Abramovich, S., Nikitin, Y.Y.: On the probability of co-primality of two natural numbers chosen at random: from Euler identity to Haar measure on the ring of adeles. Bernoulli News 24, 7–13 (2017)

    Google Scholar 

  2. Adhikari, S., Granville, A.: Visibility in the plane. J. Number Theory 129(10), 2335–2345 (2009)

    MathSciNet  Google Scholar 

  3. Alsmeyer, G., Kabluchko, Z., Marynych, A.: Limit theorems for the least common multiple of a random set of integers. Trans. Am. Math. Soc. 372(7), 4585–4603 (2019)

    MathSciNet  Google Scholar 

  4. Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York (1976)

    Google Scholar 

  5. Arias de Reyna, J., Heyman, R.: Counting tuples restricted by pairwise coprimality conditions. J. Integer Seq. 18(10) (2015). article 15.10.4

  6. Arias de Reyna, J., Heyman, R.: Tuples of polynomials over finite fields with pairwise coprimality conditions. Finite Fields Appl. 53, 36–63 (2018)

  7. Baake, M., Huck, C.: Ergodic properties of visible lattice points. Proc. Steklov Inst. Math. 288(1), 165–188 (2015)

    MathSciNet  Google Scholar 

  8. Baake, M., Moody, R.V., Pleasants, P.: Diffraction from visible lattice points and \(k\)th power free integers. Discrete Math. 221(1–3), 3–42 (2000)

    MathSciNet  Google Scholar 

  9. Baldi, P., Rinott, Y.: Asymptotic normality of some graph related statistics. J. Appl. Probab. 26(1), 171–175 (1989)

    MathSciNet  Google Scholar 

  10. Baldi, P., Rinott, Y.: On normal approximations of distributions in terms of dependency graphs. Ann. Probab. 17(4), 1646–1650 (1989)

    MathSciNet  Google Scholar 

  11. Benjamin, A.T., Bennett, C.D.: The probability of relatively prime polynomials. Math. Mag. 80(3), 196–202 (2007)

    MathSciNet  Google Scholar 

  12. Benkoski, S.J.: The probability that \(k\) positive integers are relatively \(r\)-prime. J. Number Theory 8(2), 218–223 (1976)

    MathSciNet  Google Scholar 

  13. Boca, F.P., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)

    MathSciNet  Google Scholar 

  14. Boneh, A., Hofri, M.: The coupon collector problem revisited—a survey of engineering problems and computational methods. Commun. Stat. Stoch. Models 13(1), 39–66 (1997)

    MathSciNet  Google Scholar 

  15. Boneh, S., Papanicolaou, V.: General asymptotic estimates for the coupon collector problem. J. Comput. App. Math. 67(2), 277–289 (1996)

    MathSciNet  Google Scholar 

  16. Bostan, A., Marynych, A., Raschel, K.: On the least common multiple of several random integers. J. Number Theory 204, 113–133 (2019)

    MathSciNet  Google Scholar 

  17. Bradley, T.-D., Cheng, Y.L., Luo, Y.F.: On the distribution of the greatest common divisor of Gaussian integers. Involve 9(1), 27–40 (2016)

    MathSciNet  Google Scholar 

  18. Brown, T.C., Silverman, B.W.: Rates of Poisson convergence for \(U\)-statistics. J. Appl. Probab. 16(2), 428–432 (1979)

    MathSciNet  Google Scholar 

  19. Buraczewski, D., Iksanov, A., Marynych, A.: A Brownian weak limit for the least common multiple of a random \(m\)-tuple of integers (2020). Preprint, arXiv:2004.05643v1

  20. Bureaux, J., Enriquez, N.: The probability that two random integers are coprime. Math. Nachr. 291(1), 24–27 (2018)

    MathSciNet  Google Scholar 

  21. Cai, J.-Y., Bach, E.: On testing for zero polynomials by a set of points with bounded precision. In: Computing and combinatorics (Guilin, 2001), Lect. Notes Comput. Sc. 2108, pp. 473–482. Springer Verlag (2001)

  22. Cesàro, E.: Question proposée 75. Mathesis 1, 184 (1881)

    Google Scholar 

  23. Cesàro, E.: Question 75 (Solution). Mathesis 3, 224–225 (1883)

    Google Scholar 

  24. Cesàro, E.: Probabilite de certains faits arithméthiques. Mathesis 4, 150–151 (1884)

    Google Scholar 

  25. Cesàro, E.: Étude moyenne du plus grand commun diviseur de deux nombres. Annali di Matematica Pura ed Applicata 13, 235–250 (1885)

    Google Scholar 

  26. Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres. Ann. Mat. Pur. Appl. 13, 291–294 (1885)

    Google Scholar 

  27. Chen, V.V.: Graphwise relatively prime densities. Master Thesis, California State University Channel Islands (2018). Available at http://repository.library.csuci.edu/handle/10211.3/207185?show=full

  28. Cilleruelo, J.: Visible lattice points and the chromatic zeta function of a graph. Acta Math. Hungar. 151(1), 1–7 (2017)

    MathSciNet  Google Scholar 

  29. Cilleruelo, J., Fernández, J.L., Fernández, P.: Visible lattice points in random walks. Europ. J. Combinat. 75, 92–112 (2019)

    MathSciNet  Google Scholar 

  30. Cilleruelo, J., Rué, J., S̆arkac, P., Zumalacárregui, A.: The least common multiple of random sets of positive integers. J. Numb. Theory. 144, 92–104 (2014)

    MathSciNet  Google Scholar 

  31. Collins, G.E., Johnson, J.R.: The probability of relative primality of Gaussian integers. In: Symbolic and algebraic computation (Rome, 1988), Lecture Notes in Comput. Sci. 358, pp. 252–258. Springer, Berlin (1989)

  32. Christopher, J.: The asymptotic density of some \(k\) dimensional sets. Am. Math. Mon. 63(6), 399–401 (1956)

    MathSciNet  Google Scholar 

  33. Cohen, E.: Arithmetical functions of a greatest common divisor I. Proc. Am. Math. Soc. 11(2), 164–171 (1960)

    MathSciNet  Google Scholar 

  34. Corteel, S., Savage, C.D., Wilf, H.S., Zeilberger, D.: A pentagonal number sieve. J. Combin. Theory Ser. A 82(2), 186–192 (1998)

    MathSciNet  Google Scholar 

  35. Darling, R.W.R., Pyle, E.E.: Maximum gcd among pairs of random integers. Integers 11 (2011). Paper A6

  36. Diaconis, P., Erdős, P.: On the distribution of the greatest common divisor. Technical Report No. 12, Department of Statistics, Stanford University, Stanford, 1977. Reprinted in: A Festschrift for Herman Rubin, Lecture Notes, Monograph Series 45, pp. 56–61. Institute of Mathematical Statistics (2004)

  37. Dirichlet, P.: Über die Bestimmung der mittleren Werte in der Zahlentheorie, pp. 69–83. Abhandl. Kgl. Preuss. Acad. Wiss., Berlin (1849)

  38. Durango, F., Fernández, J.L., Fernández, P.: Some arithmetic properties of Pólya’s urn. Work in progress (2020)

  39. Erdős, P.: A survey of problems in combinatorial number theory. In: Combinatorial mathematics, optimal designs and their applications, Annals of Discrete Mathematic 6, pp. 117–124. North Holland (1980)

  40. Erdős, P., Gruber, P.M., Hammer, J.: Lattice points. Pitman Monographs and Surveys in Pure and Applied Mathematics 39. Longman, (1989)

  41. Fernández, J.L., Fernández, P.: Equidistribution and coprimality (2013). Preprint, arXiv:1310.3802

  42. Fernández, J.L., Fernández, P.: Random index of codivisibility (2013). Preprint, arXiv:1310.4681

  43. Fernández, J.L., Fernández, P.: On the probability distribution of the gcd and lcm of \(r\)-tuples of integers (2013). Preprint, arXiv: 1305.0536

  44. Fernández, J.L., Fernández, P.: Asymptotic normality and greatest common divisors. Int. J. Number Theory 11(1), 89–126 (2015)

    MathSciNet  Google Scholar 

  45. Fernández, J.L., Fernández, P.: Windows and visibility. Work in progress (2020)

  46. Ferraguti, A., Micheli, G.: On Mertens-Cesàro theorem for number fields. Bull. Austr. Math. Soc. 93(2), 199–210 (2016)

    Google Scholar 

  47. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discrete Appl. Math. 39(3), 207–229 (1992)

    MathSciNet  Google Scholar 

  48. Gao, Z., Panario, P.: Degree distribution of the greatest common divisor of polynomials over \({\mathbb{F}}_q\). Random Struct. Algorithms 29(1), 26–37 (2006)

    Google Scholar 

  49. Goins, E.H., Harris, P.E., Kubik, B., Mbirika, A.: Lattice point visibility on generalized lines of sight. Am. Math. Mon. 125(7), 593–601 (2018)

    MathSciNet  Google Scholar 

  50. Golomb, S.W.: Probability, information theory, and prime number theory. Discrete Math. 106(107), 219–229 (1992)

    MathSciNet  Google Scholar 

  51. Goodrich, A., Mbirika, A., Nielsen, J.: New methods to find patches of invisible integer lattice points (2020). Preprint, arXiv:1805.03186v2

  52. Guo, X., Hou, F., Liu, X.: Natural density of relative coprime polynomials in \({\mathbb{F}}_q[x]\). Miskolc Math. Notes 15(2), 481–488 (2014)

    MathSciNet  Google Scholar 

  53. Hales, A.W.: Random walks on visible points. IEEE Trans. Inform. Theory 64(4), 3150–3152 (2018). part 2

    MathSciNet  Google Scholar 

  54. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 5th edn. The Clarendon Press, Oxford Science Publications, New York (1979)

    Google Scholar 

  55. Harris, P., Omar, M.: Lattice point visibility on power functions. Integers 18 (2018). Paper No. A90

  56. Herzog, F., Stewart, B.: Patterns of visible and nonvisible lattices. Am. Math. Mon. 78, 487–496 (1971)

    MathSciNet  Google Scholar 

  57. Hilberdink, T., Luca, F., Tóth, L.: On certain sums concerning the gcd’s and lcm’s of \(k\) positive integers. Int. J. Numb. Theor. 16(1), 77–90 (2020)

    MathSciNet  Google Scholar 

  58. Hilberdink, T., Tóth, L.: On the average value of the least common multiple of \(k\) positive integers. J. Number Theory 169, 327–341 (2016)

    MathSciNet  Google Scholar 

  59. Hou, X.-D., Mullen, G.L.: Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields. Finite Fields Appl. 15(3), 304–331 (2009)

    MathSciNet  Google Scholar 

  60. Hwang, H.-K.: Asymptotic behaviour of some infinite products involving prime numbers. Acta Arith. 75(4), 339–350 (1996). Corrigenda in Acta Arith. 87 (1999), no. 4, 391

    MathSciNet  Google Scholar 

  61. Hu, J.: The probability that random positive integers are \(k\)-wise relatively prime. Int. J. Number Theory 9(5), 1263–1271 (2013)

    MathSciNet  Google Scholar 

  62. Hu, J.: Pairwise relative primality of positive integers (2014). Preprint, arXiv:1406.3113

  63. Janson, S.: Normal convergence by higher semi-invariants with applications to sums of dependent random variables an random graphs. Ann. Probab. 16(1), 305–312 (1988)

    MathSciNet  Google Scholar 

  64. Kac, M.: Statistical independence in probability, analysis and number theory. The Carus Mathematical Monographs 12, published by the Mathematical Association of America, distributed by John Wiley and Sons, New York (1959)

  65. Knuth, D.E.: The art of computer programming, vol. 2 Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston (1998)

    Google Scholar 

  66. Laishram, S., Luca, F.: Rectangles of nonvisible lattice points. J. Integer Seq. 18(10) (2015). Article 15.10.8

  67. Laison, J.D., Schick, M.: Seeing dots: visibility of lattice points. Math. Mag. 80(4), 274–282 (2007)

    MathSciNet  Google Scholar 

  68. Lehmer, D.N.: Asymptotic evaluation of certain totient sums. Am. J. Math. 22(4), 293–335 (1900)

    MathSciNet  Google Scholar 

  69. Lei, J., Kadane, J.B.: On the probability that two random integers are coprime. Stat. Sci. 35(2), 272–279 (2020)

    MathSciNet  Google Scholar 

  70. Liu, K., Meng, X.: Visible lattice points along curves. To appear in Ramanujan J. (2020). https://doi.org/10.1007/s11139-020-00302-w

  71. Liu, K., Meng, X.: Random walks on generalized visible points (2020). Prepint, arXiv:2009.03609

  72. Martineau, S.: On coprime percolation, the visibility graphon, and the local limit of the gcd profile (2018). Preprint, arXiv:1804.06486

  73. Mehrdad, B., Zhu, L.: Limit theorems for empirical density of greatest common divisors. Math. Proc. Cambridge Philos. Soc. 161(3), 517–533 (2016)

    MathSciNet  Google Scholar 

  74. Mertens, F.: Ueber einige asymptotische Gesetze der Zahlentheorie. J. Reine Angew. Math. 77, 289–338 (1874)

    MathSciNet  Google Scholar 

  75. Moree, P.: Counting carefree couples. Math. Newsl. 24(4), 103–110 (2014)

    MathSciNet  Google Scholar 

  76. Morrison, K.E.: Random polynomials over finite fields (1999). Available at http://www.calpoly.edu/~kmorriso/Research/RPFF.pdf

  77. Nymann, J.E.: On the probability that \(k\) positive integers are relatively prime. J. Number Theory 4(5), 469–473 (1972)

    MathSciNet  Google Scholar 

  78. Nymann, J.E., Leahey, W.J.: On the probability that integers chosen according to the binomial distribution are relatively prime. Acta Arith. 31(3), 205–211 (1976)

    MathSciNet  Google Scholar 

  79. Pleasants, P.A.B., Huck, C.: Entropy and diffraction of the \(k\)-free points in \(n\)-dimensional lattices. Discrete Comput Geom. 50(1), 39–68 (2013)

    MathSciNet  Google Scholar 

  80. Reifegerste, A.: An involution concerning pairs of polynomials over \({\mathbb{F}}_2\). J. Combin. Theory Ser. A 90(1), 216–220 (2000)

    MathSciNet  Google Scholar 

  81. Schroeder, M.: Number theory in science and communication. With applications in cryptography, physics, digital information, computing and self-similarity. Springer Series in Information Sciences 7, 2nd edn. Springer-Verlag, Berlin (1986)

    Google Scholar 

  82. Silverman, B., Brown, T.: Short distances, flat triangles and Poisson limits. J. Appl. Probab. 15(4), 815–825 (1978)

    MathSciNet  Google Scholar 

  83. Sittinger, B.D.: The probability that random algebraic integers are relatively \(r\)-prime. J. Number Theory 130(1), 164–171 (2010)

    MathSciNet  Google Scholar 

  84. Sittinger, B.D.: The density of \(j\)-wise relatively \(r\)-prime algebraic integers. Bull. Aust. Math. Soc. 98(2), 221–229 (2018)

    MathSciNet  Google Scholar 

  85. Sittinger, B.D., Demoss, R.D.: The probability that ideals in a number ring are \(k\)-wise relatively \(r\)-prime. Int. J. Number Theory 16(8), 1753–1765 (2020)

    MathSciNet  Google Scholar 

  86. Sugita, H., Takanobu, S.: The probability of two integers to be co-prime, revisited - On the behavior of CLT-scaling limit. Osaka J. Math. 40(4), 945–976 (2003)

    MathSciNet  Google Scholar 

  87. Sugita, H., Takanobu, S.: The probability of two \({\mathbb{F}}_q\)-polynomials to be coprime. In: Probability and number theory (Kanazawa 2005), Adv. Stud. Pure Math. 49, pp. 455–478. Math. Soc. Japan, Tokyo (2007)

  88. Sylvester, J.J.: Sur le nombre de fractions ordinaires inégales qu’on peut exprimer en se servant de chiffres qui n’excèdent pas un nombre donné. C. R. Acad. Sci. Paris 96, 409–413 (1986). Reprinted in The Collected Mathematical Papers of James Joseph Sylvester, vol. 4, Cambridge University Press

  89. Tenenbaum, G.: Introduction to analytic and probabilistic number theory. Graduate Studies in Mathematics 163, 3rd edn. American Mathematical Society, Providence (2015)

    Google Scholar 

  90. Tóth, L.: The probability that \(k\) positive integers are pairwise relatively prime. Fibonacci Quart. 40(1), 13–18 (2002)

    MathSciNet  Google Scholar 

  91. Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. 13(8) (2010). Article 10.8.1

  92. Tóth, L.: Multiplicative arithmetic functions of several variables: a survey. In: Mathematics without boundaries. Surveys in Pure Mathematics, pp. 483–514. Springer (2014)

  93. Tóth, L.: Counting \(r\)-tuples of positive integers with \(k\)-wise relatively prime components. J. Number Theory 166, 105–116 (2016)

    MathSciNet  Google Scholar 

  94. Van Lint, J.H., Wilson, R.: M: A course in combinatorics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  95. Wolfram, S.: A new kind of Science Wolfram Media. Champaign, IL (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of both authors is partially supported by Fundación Akusmatika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.L., Fernández, P. Divisibility properties of random samples of integers. RACSAM 115, 26 (2021). https://doi.org/10.1007/s13398-020-00960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00960-x

Keywords

Mathematics Subject Classification

Navigation