Skip to main content
Log in

Magneto-Impedance in Co35Fe65/Cu/Co35Fe65 Single and Bi-layer Thin Films

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The magneto-impedance response in Co35Fe65/Cu/Co35Fe65 thin film magneto-impedance cells deposited by the thermal evaporation method has been studied with single and bilayer structures at the substrate temperature 300 K and 150 K. While the thin film deposited at 300 K has BCC structure, the amorphous character is dominant for 150 K deposited ones. Entire films show soft magnetic behavior with high saturation magnetization (MS) and low coercive field (HC). Bilayer thin film structure reveals higher magneto-impedance values than single-layer thin films. The relation between the magneto-impedance effect and layered structure is discussed in terms of structural growing mechanism and scattering effect. The highest magneto-impedance sensitivity (η) 37%/Oe is observed for the Co35Fe65/Cu/Co35Fe65 bilayer thin film. The HC and remanence ratio (MR/MS) values for single layer at 300 K, single and bilayer cells at 150 K are measured as 51, 158 and 253 Oe—0.48, 0.78, and 0.80, respectively. When η with the Soliton wave model is compared with the sample at room temperature, an increase of over 1700% is observed. The difference between the classical growing method at 300 K and the Soliton wave model at 150 K is the evidence of the logic of the work performed and its accuracy. The relatively high sensitivity is connected with interlayer usage and low temperature-smaller particle size in Soliton model growth. The observed findings are of practical importance to develop future technological magnetic sensor applications with high sensitivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1:
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makhnovski, D.P., Panina, L.V.: Field and stress tunable microwave composite materials based on ferromagnetic microwires. In: Murray, V.N. (ed.) Progress in Ferromagnetism Research, pp. 257–295. Nova Science Publishers Inc., New York (2005)

    Google Scholar 

  2. Ripka, P.: Advances in fluxgate sensors. Sens. Actuators A 106, 8–14 (2003)

    Article  CAS  Google Scholar 

  3. Reig, C., Cubells-Beltran, M.D., Munoz, D.R.: Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9(10), 7919–7942 (2009). https://doi.org/10.3390/s91007919

    Article  CAS  Google Scholar 

  4. Robbes, D., Dolabdjian, C., Saez, S., Monfort, Y., Kaiser, G., Ciureanu, P.: Highly sensitive uncooled magnetometers: state of the art. Superconducting magnetic hybrid magnetometers, an alternative to SQUIDs? IEEE Trans. Appl. Supercond. 11(1), 629–634 (2001). https://doi.org/10.1109/77.919423

    Article  Google Scholar 

  5. Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002). https://doi.org/10.1016/S0304-8853(02)00561-9

    Article  CAS  Google Scholar 

  6. Uppili, H., Daglen, B.: Bi-directional giant magneto-impedance sensor. Adv. Mater. Phys. Chem. 3, 249–254 (2013). https://doi.org/10.4236/ampc.2013.35036

    Article  CAS  Google Scholar 

  7. Zhang, Y., Zhang, M., Li, D., Zuo, T., Zhou, K., Gao, M.C., Sun, B., Shen, T.: Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100–x(Al1/3Si2/3)x system. Metals 9, 382 (2019)

    Article  CAS  Google Scholar 

  8. Uchiyama, T., Mohri, K., Honkura, Y., Panina, L.V.: Recent advances of pico-Tesla resolution magneto-impedance sensor based on amorphous wire CMOS IC MI sensor. IEEE Trans. Magn. 48, 3833–3839 (2012). https://doi.org/10.1109/TMAG.2012.2198627

    Article  Google Scholar 

  9. Panina, L.V., Mohri, K., Uchiyama, T., Bushida, K., Noda, M.: Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249–1260 (1995). https://doi.org/10.1109/20.364815

    Article  CAS  Google Scholar 

  10. Phan, M., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53(2), 323–420 (2008). https://doi.org/10.1016/j.pmatsci.2007.05.003

    Article  Google Scholar 

  11. Makhnovskiy, D.P., Panina, L.V., Mapps, D.J.: Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential. Phys. Rev. B 63, 144424–144441 (2001). https://doi.org/10.1103/PhysRevB.63.144424

    Article  CAS  Google Scholar 

  12. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994). https://doi.org/10.1063/1.112104

    Article  CAS  Google Scholar 

  13. Beach, R.S., Berkowitz, A.E.: Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon (invited). J. Appl. Phys. 76, 6209–6213 (1994). https://doi.org/10.1063/1.358313

    Article  CAS  Google Scholar 

  14. Panina, L.V., Mohri, K., Bushida, K., Noda, M.: Giant magnetoimpedance and magnetoinductive effects in amorphous alloys. J. Appl. Phys. 76, 6198–6203 (1994). https://doi.org/10.1063/1.358310

    Article  CAS  Google Scholar 

  15. Jiles, D.C., Lo, C.C.H.: The role of new materials in the development of magnetic sensors and actuators. Sens. Actuators A Phys. 106, 3–7 (2003). https://doi.org/10.1016/S0924-4247(03)00255-3

    Article  CAS  Google Scholar 

  16. Platt, C.L., Berkowitz, A.E., Smith, D.J., McCartney, M.R.: Correlation of coercivity and microstructure of thin CoFe films. J. Appl. Phys. 88(4), 2058–2062 (2000). https://doi.org/10.1063/1.1305833

    Article  CAS  Google Scholar 

  17. Bessais, L., Zehani, K., Bez, R., Moscovici, J., Lassri, H., Hill, E.K., Mliki, N.: High magnetic moment CoFe nanoparticles, In: The Minerals, Metals & Materials Society (eds.) TMS 2014: 143rd Annual Meeting & Exhibition, pp. 15–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-48237-8_3

  18. Manh, D.H., Tung, D.K., Nam, D.N.H., Hong, L.V., Phong, P.T., Phuc, N.X.: Magnetic properties of annealed Fe65Co35 powders prepared by mechanical alloying. IEEE Trans. Magn. 50(6), 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2303078

    Article  CAS  Google Scholar 

  19. Bozorth, R.M.: Ferromagnetism. D. Van. Nostrand Co., Inc., New York (1951)

    Google Scholar 

  20. Yüzüak, G.D., Yüzüak, E., Nevruzoglu, V., Dinçer, I.: Role of low substrate temperature deposition on Co–Fe thin films. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3096-5

    Article  Google Scholar 

  21. Miyao, T., Liu, X., Morisako, A.: Effect of a Co underlayer on high moment Fe65Co35 thin films. J. Magn. Soc. Jpn. 30, 341–344 (2006)

    Article  CAS  Google Scholar 

  22. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990). https://doi.org/10.1109/20.104389

    Article  CAS  Google Scholar 

  23. Vopsaroiu, M., Georgieva, M., Grundy, P.J., Vallejo Fernandez, G., Manzoor, S., Thwaites, M.J., O’Grady, K.: Preparation of high moment CoFe films with controlled grain size and coercivity. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1855276

    Article  Google Scholar 

  24. Kurlyandskaya, G.V., Fernández, E., Svalov, A., Burgoa Beitia, A., García-Arribas, A., Larrañaga, A.: Flexible thin film magnetoimpedance sensors. J. Magn. Magn. Mater. 415, 91–96 (2016). https://doi.org/10.1016/j.jmmm.2016.02.004

    Article  CAS  Google Scholar 

  25. Wang, X., Yuan, W., Zhao, Z., Li, X., Ruan, J., Yang, X.: Giant magnetoimpedance effect in CuBe/NiFe band CuBe/insulator/NiFeB electroless-deposited composite wires. IEEE Trans. Magn. 41, 113–115 (2005). https://doi.org/10.1109/TMAG.2004.832479

    Article  CAS  Google Scholar 

  26. Kraus, L.: The theoretical limits of giant magneto-impedance. J. Magn. Magn. Mater. 354, 167–196 (1999). https://doi.org/10.1016/S0304-8853(98)00746-X

    Article  Google Scholar 

  27. Kurlyandskaya, G.V., Bebenin, N.G., Vas’kovskii, V.O.: Giant magnetic impedance of wires with a thin magnetic coating. Phys. Metal. Metallogr. 111(2), 133–154 (2011). https://doi.org/10.1134/S0031918X11010200

    Article  Google Scholar 

  28. Skorvanek, I., Marcin, J., Krenicky, T., Kovac, J., Svec, P., Janickovic, D.: Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys. J. Magn. Magn. Mater. 304(2), 203–207 (2006). https://doi.org/10.1016/j.jmmm.2006.02.120

    Article  CAS  Google Scholar 

  29. Skorvanek, I., Marcin, J., Turcanova, J., Kovac, J., Svec, P.: Improvement of soft magnetic properties in Fe38Co38Mo8B15Cu amorphous and nanocrystalline alloys by heat treatment in external magnetic field. J. Alloys Compd. 504(S1), S135–138 (2010). https://doi.org/10.1016/j.jallcom.2010.04.033

    Article  Google Scholar 

  30. Skorvanek, I., Marcin, J., Capik, M., Varga, M., Turcanova, J., Kovac, J., Svec, P., Janickovic, D., Kovac, F., Stoyka, V.: Tailoring of functional properties in Fe-based soft magnetic alloys by thermal processing under magnetic field. Magnetohydrodynamics 48, 371–377 (2012). https://doi.org/10.22364/mhd

    Article  Google Scholar 

  31. González-Legarreta, L., Andrejka, F., Marcin, J., Švec, P., Varga, M., Janičkovič, D., Švec Sr., P., Škorvanek, I.: Magnetoimpedance effect in nanocrystalline Fe73.5Cu1Nb3Si13.5B9 single-layer and bilayer ribbons. J. Alloys Compd. 688, 94–100 (2016). https://doi.org/10.1016/j.jallcom.2016.06.240

    Article  CAS  Google Scholar 

  32. Ghemes, A., Dragos-Pinzaru, O., Chiriac, H., Lupu, N., Grigoras, M., Shore, D., Stadler, B., Tabakovic, I.: Controlled electrodeposition and magnetic properties of Co35Fe65 nanowires with high saturation magnetization. J. Electrochem. Soc. 164(2), D13–D22 (2017). https://doi.org/10.1149/2.0441702jes

    Article  CAS  Google Scholar 

  33. Amirabadizadeh, A., Lotfollahi, Z., Zelati, A.: Giant magnetoimpedance effect of Co68.15 Fe4.35Si12.5B15 amorphous wire in the presence of magnetite ferrofluid. J. Magn. Magn. Mater. 415, 102–105 (2016). https://doi.org/10.1016/j.jmmm.2015.11.029

    Article  CAS  Google Scholar 

  34. Yüzüak, G.D., Yüzüak, E.: Investigation of magnetic field response features of multilayer CoFe On kapton tape. Cumhur. Sci. J. 38(4), 781–787 (2017). https://doi.org/10.17776/csj.348922

    Article  Google Scholar 

  35. Hua, J., Wang, Y., Zhang, Y., Liu, H., Qin, H., Li, B.: Sample thickness dependence of giant magnetoimpedance under low fields for La0.67Sr0.33Mn0.98Co0.02O3 manganites. J. Alloys Compd. 509, 1360–1363 (2011). https://doi.org/10.1016/j.jallcom.2010.10.079

    Article  CAS  Google Scholar 

  36. Knobel, M., Vazquez, M., Kraus, L.: Gaint magnetoimpedance. In: Buschow, K.H. (ed.) Handbook of Magnetic Materials, vol. 15, pp. 497–563. Elsevier, Amsterdam (2003). https://doi.org/10.1016/S1567-2719(03)15005-6

    Chapter  Google Scholar 

  37. Morikawa, T., Nishibe, Y., Yamadera, H., Nonomura, Y., Takeuchi, M., Taga, Y.: Giant magneto-impedance effect in layered thin films. IEEE Trans. Magn. 33(5), 4367–4372 (1997). https://doi.org/10.1109/20.620448

    Article  CAS  Google Scholar 

  38. Yüzüak, E., Durak Yüzüak, G.: Investigation of magneto-impedance effect of bilayer iron films. Cumhur. Univ. Fac. Sci. Sci. J. 38(2), 286–292 (2017). https://doi.org/10.17776/cumuscij.289050

    Article  Google Scholar 

Download references

Acknowledgements

G.D.Yüzüak would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB - 2218 – The National Postdoctoral Research Scholarship Program. We would like thank to Prof. Dr. İlker Dinçer to the contribution of magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Durak Yüzüak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüzüak, G.D., Yüzüak, E. & Nevruzoğlu, V. Magneto-Impedance in Co35Fe65/Cu/Co35Fe65 Single and Bi-layer Thin Films. Electron. Mater. Lett. 16, 473–480 (2020). https://doi.org/10.1007/s13391-020-00237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00237-w

Keywords

Navigation