Skip to main content
Log in

Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells (p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency (η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban, J. Phys. Chem. B 108, 8106 (2004).

    Article  Google Scholar 

  2. M. Gratzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  3. C. Longo and M.-A. De Paoli, J. Braz. Chem. Soc. 14, 889 (2003).

    Article  Google Scholar 

  4. N. Andrew, F. Michael, K. Robert, C. Yi-Bing, and B. Udo, Nanotechnology 19, 295304 (2008).

    Article  Google Scholar 

  5. A. Morandeira, J. Fortage, T. Edvinsson, L. Le Pleux, E. Blart, G. Boschloo, A. Hagfeldt, L. Hammarström, and F. Odobel, J. Phys. Chem. C 112, 1721 (2008).

    Article  Google Scholar 

  6. S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, J. Phys. Chem. C 112, 16134 (2008).

    Article  Google Scholar 

  7. H. Zhu, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. C 111, 17455 (2007).

    Article  Google Scholar 

  8. I. R. Perera, T. Daeneke, S. Makuta, Z. Yu, Y. Tachibana, A. Mishra, P. Bäuerle, C. A. Ohlin, U. Bach, and L. Spiccia, Angew. Chem. Int. Ed. 54, 3758 (2015).

    Article  Google Scholar 

  9. J. He, H. Lindström, A. Hagfeldt, and S.-E. Lindquist, J. Phys. Chem. B 103, 8940 (1999).

    Article  Google Scholar 

  10. A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarström, J. Phys. Chem. B 109, 19403 (2005).

    Article  Google Scholar 

  11. E. A. Gibson, A. L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, and L. Hammarström, Angew. Chem. Int. Ed. 48, 4402 (2009).

    Article  Google Scholar 

  12. Y. Mizoguchi and S. Fujihara, Electrochem. Solid State Lett. 11, K78 (2008).

    Article  Google Scholar 

  13. A. Nakasa, H. Usami, S. Sumikura, S. Hasegawa, T. Koyama, and E. Suzuki, Chem. Lett. 34, 500 (2005).

    Article  Google Scholar 

  14. K. Kalyanasundaram and M. Grätzel, Coord. Chem. Rev. 177, 347 (1998).

    Article  Google Scholar 

  15. J. N. Hart, D. Menzies, Y.-B. Cheng, G. P. Simon, and L. Spiccia, C. R. Chim. 9, 622 (2006).

  16. X. Li, Y. Qiu, S. Wang, S. Lu, R. I. Gruar, X. Zhang, J. A. Darr, and T. He, Phys. Chem. Chem. Phys. 15, 14729 (2013).

    Article  Google Scholar 

  17. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, Electrochim. Acta 54, 1319 (2009).

    Article  Google Scholar 

  18. X. L. Zhang, F. Huang, A. Nattestad, K. Wang, D. Fu, A. Mishra, P. Bauerle, U. Bach, and Y.-B. Cheng, Chem. Commun. 47, 4808 (2011).

    Article  Google Scholar 

  19. X. L. Zhang, Z. Zhang, F. Huang, P. Bauerle, U. Bach, and Y.-B. Cheng, J. Mater. Chem. 22, 7005 (2012).

    Article  Google Scholar 

  20. J. Y. Park, B. Y. Jang, C. H. Lee, H. J. Yun, and J. H. Kim, RSC Adv. 4, 61248 (2014).

    Article  Google Scholar 

  21. M. Afzal, P. K. Butt, and H. Ahmad, J. Therm. Anal. Calorim. 37, 1015 (1991).

    Article  Google Scholar 

  22. J. Hong, G. Guo, and K. Zhang, J. Anal. Appl. Pyrolysis 77, 111 (2006).

    Article  Google Scholar 

  23. G. A. M. Hussein, A. K. H. Nohman, and K. M. A. Attyia, J. Therm. Anal. Calorim. 42, 1155 (1994).

    Article  Google Scholar 

  24. A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y. B. Cheng, A. Mishra, P. Bauerle, and U. Bach, Nat. Mater. 9, 31 (2010).

    Article  Google Scholar 

  25. H. J. Snaith, Energy Environ. Sci. 5, 6513 (2012).

    Article  Google Scholar 

  26. R. Cheruku, G. Govindaraj, and L. Vijayan, Mater. Chem. Phys. 141, 620 (2013).

    Article  Google Scholar 

  27. L. Vijayan, R. Cheruku, and G. Govindaraj, Mat. Res. Bull. 50, 341 (2014).

    Article  Google Scholar 

  28. J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Cheruku or Jae Hong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, P., Bao, L.Q., Cheruku, R. et al. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses. Electron. Mater. Lett. 12, 638–644 (2016). https://doi.org/10.1007/s13391-016-6055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6055-8

Keywords

Navigation