Skip to main content
Log in

XPS and Raman study of slope-polished Cu(In,Ga)Se2 thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

An Erratum to this article was published on 25 August 2016

Abstract

The growth of quality Cu(In,Ga)Se2 photovoltaic absorber without secondary phases is very important for improving the solar cell efficiency. Although X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy can identify the secondary phases, they provide insufficient information because of their insufficient resolution and complexity in analysis. In general, normal Raman spectroscopy is better for the analysis of secondary phases. On the other hand, the Raman signal provides information for film depths of less than 300 nm, and the Raman information cannot represent the properties of the entire film. In this regard, the authors introduce a new way of identifying secondary phases in Cu(In,Ga)Se2 films using depth Raman analysis. The as-prepared film was polished using a dimple grinder, which expanded a 2 μm thick film to approximately 1 mm, which is more than sufficient to resolve the depth distribution. Raman analysis indicated that the Cu(In,Ga)Se2 film showed different secondary phases, such as CuIn3Se5, InSe and CuSe, present in different depths of the film, whereas XPS provided complex information about the phases. Overall, the present study emphasizes that the Raman depth profile is more efficient for the identification of secondary phases in Cu(In,Ga)Se2 thin films than XPS and XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Progress in Photovoltatics: Research and Applications 23, 1 (2015).

    Article  Google Scholar 

  2. D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys. 73, 2902 (1993).

    Article  Google Scholar 

  3. W. K. Kim, S. Kim, E. A. Payzant, S. A. Speakman, S. Yoon, R. M. Kaczynski, R. D. Acher, T. J. Anderson, O. D. Crisalle, S.-S. Lic, and V. Craciund, J. Phys. Chem. Solids 66, 1915 (2005).

    Article  Google Scholar 

  4. J. H. Park, I. S. Yang, and H. Y. Cho, Appl. Phys. A 58, 125 (1994).

    Article  Google Scholar 

  5. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. Mellikov, Thin Solid Films 519, 7394 (2011).

    Article  Google Scholar 

  6. F. Zheng, J. Y. Shen, Y. Q. Liu, W. K. Kim, M. Y. Chu, M. Ider, X.-H. Bao, and T. J. Anderson, Calphad 32, 432 (2008).

    Article  Google Scholar 

  7. S. Merdes, R. Mainz, J. Klaer, A. Meeder, H. Rodriguez- Alvarez, H. W. Schock, M. C. Lux-Steiner, and R. Klenk, Solar Energy Materials & Solar Cells 95, 864 (2011).

    Article  Google Scholar 

  8. E. Rudigier, J. Djordjevic, C. von Klopmann, B. Barcones, A. Pérez-Rodríguez, and R. Scheer, J. Phys. Chem. Solids 66, 1954 (2005).

    Article  Google Scholar 

  9. C.-H. Chung, S.-H. Li, B. Lei, W. Yang, W. W. Hou, B. Bob, and Y. Yang, Chem. Mater. 23, 964 (2011).

    Article  Google Scholar 

  10. J. Weszka, P. Daniel, A. Burian, A. M. Burian, and A. T. Nguyen, J. Non-Crystal. Solids 265, 98 (2000).

    Article  Google Scholar 

  11. X. Fontané, V. Izquierdo-Roca, L. Calvo-Barrio, and J. Álvarez-Garcia, Appl. Phys. Lett. 95, 121907 (2009).

    Article  Google Scholar 

  12. C. M. Ruiz, X. Fontané, A. Fairbrother, V. Izquierdo-Roca, C. Broussillou, S. Bodnar, A. Pérez-Rodríguez, and V. Bermúdez, Appl. Phys. Lett. 102, 091106 (2013).

    Article  Google Scholar 

  13. D. G. Moon, S. Ahn, J. H. Yun, A. Cho, H. Gwak, S. K. Ahn, K. Shin, K. Yoon, H.-D. Lee, H. Pak, and S. Kwon, Solar Energy Materials & Solar Cells 95, 2786 (2011).

    Article  Google Scholar 

  14. J. H. Ely, T. R. Ohno, T. E. Furtak, and A. K. Nelson, Thin Solid Films 371, 36 (2000).

    Article  Google Scholar 

  15. J. Alvarez-Garcı́a, E. Rudigier, N. Rega, B. Barcones, R Scheer, A. Pérez-Rodrı́guez, A. Romano-Rodrı́guez, and J. R. Morante, Thin Solid Films 431, 122 (2003).

    Article  Google Scholar 

  16. A.V. Naumkin, A. Kraut-Vass, Stephen W. Gaarenstroom, and C. J. Powell, NIST X-ray Photoelectron Spectroscopy Database, U.S. Secretary of Commerce on Behalf of the United States of America, <http://srdata.nist.gov/xps/>

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Wook Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beak, G.Y., Jeon, CW. XPS and Raman study of slope-polished Cu(In,Ga)Se2 thin films. Electron. Mater. Lett. 12, 399–403 (2016). https://doi.org/10.1007/s13391-016-6044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6044-y

Keywords

Navigation