Skip to main content
Log in

Numerical modelling on stress and dislocation generation in multi-crystalline silicon during directional solidification for PV applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Numerical modelling has emerged as a powerful tool for the development and optimization of directional solidification process for mass production of multicrystalline silicon. A transient global heat transfer model is performed to investigate the effect of bottom grooved furnace upon the directional solidification (DS) process of multi-crystalline silicon (mc-Si). The temperature distribution, von Mises stress, residual stress and dislocation density rate in multi-crystalline silicon ingots grown by modified directional solidification method have been investigated for five growth stages using finite volume method at the critical Prandtl number, Pr = 0.01. This paper discusses bottom groove furnace instead of seed crystal DS method. It achieves an advanced understanding of the thermal and mechanical behaviour in grown multi-crystalline ingot by bottom grooved directional solidification method. The von Mises stress and dislocation density were reduced while using the bottom grooved furnace. This work was carried out in the different grooves of radius 30 mm, 60 mm and 90 mm of the heat exchanger block of the DS furnace. In this paper, the results are presented for 60 mm radius groove only because it has got better results compared to the other grooves. Also, the computational results of bottom grooved DS method show better performance compared the conventional DS method for stress and dislocation density in grown ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Sun, L. Liu, Z. Li, and W. Zhao, Materials for Renewable Energy and Environment, 1, 95 (2011).

    Google Scholar 

  2. G. Muller and G. Friedrich, AIP Conf. Proc. 1270, 255 (2008).

    Google Scholar 

  3. J. W. Shur, B. K. Kang, S. J. Moonb, W. W. Sob, and D. H. Yoon, Sol. Energ. Mat. Sol. C. 95, 3159 (2011).

    Article  Google Scholar 

  4. A. F. B. Braga, S. P. Moreira, P. R. Zamperi, J. M. G. Bacchin, and P. R. Mei, Sol. Energ. Mat. Sol. C. 92, 418 (2008).

    Article  Google Scholar 

  5. K. Nakajima, K. Kutsukake, K. Fujiwara, K. Morishita, and S. Ono, J. Cryst. Growth 319 13 (2011).

    Article  Google Scholar 

  6. T. F. Li, H. C. Huang, H. W. Tsai, A. Lan, C. Chuck, and C. W. Lan, J. Cryst. Growth 340, 202 (2012).

    Article  Google Scholar 

  7. T. F. Li, K. M. Yeh, W. C. Hsu, and C. W. Lan, J. Cryst. Growth 318, 219 (2011).

    Article  Google Scholar 

  8. N. G. Zhou, M. H. Lin, L. Zhou, Q. F. Hu, H. S. Fang, and S. Wang, J. Cryst. Growth 381, 22 (2013).

    Article  Google Scholar 

  9. X. Yang, W. Ma, G. Lv, K. Wei, T. Luo, and D. Chen, J. Cryst. Growth 400, 7 (2014).

    Article  Google Scholar 

  10. J. Wei, H. Zhang, L. Zheng, C. Wang, and B. Zhao, Sol. Energ. Mat. Sol. C. 93, 1531 (2009).

    Article  Google Scholar 

  11. T. Y. Wang, S. L. Hsu, C. C. Fei, K. M. Yei, W. C. Hsu, and C. W. Lan, J. Cryst. Growth 311, 263 (2009).

    Article  Google Scholar 

  12. Q. Chen, Y. Jiang, J. Yan, and M. Qin, Prog. Nat. Sci. 18, 1465 (2008).

    Article  Google Scholar 

  13. W. Ma, G. Zhong, L. Sun, Q. Yu, X. Huang, L. Liu, and G. Chen, Sol. Energ. Mat. Sol. C. 100, 231 (2012).

    Article  Google Scholar 

  14. L. Braescu and T. Duffar, J. Cryst. Growth 310, 484 (2008).

    Article  Google Scholar 

  15. J. W. Huang, W. S. Hwang, C. H. Hwang, and Y. W. Chang, IOP Conf Series: Materials Science and Engineering 33, 012059 (2012).

    Article  Google Scholar 

  16. J. Fainberg and H. J. Leister, Comput. Method. Appl. M. 137, 167 (1996).

    Article  Google Scholar 

  17. H. Alexander and P. Haasen, Solid State Phys. 22, 27 (1968).

    Google Scholar 

  18. S. Nakano, X. J. Chen, B. Gao, and K. Kakimoto, J. Cryst. Growth 318, 280 (2011).

    Article  Google Scholar 

  19. J. P. Hirth and J. Lothe, Theory of Dislocations, Krieger Publishing Company, Malabar, USA (1983).

    Google Scholar 

  20. W. Zhao, L. Liu, L. Sun, and A. Geng, J. Cryst. Growth 401, 296 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, M., Karuppasamy, P., Ramasamy, P. et al. Numerical modelling on stress and dislocation generation in multi-crystalline silicon during directional solidification for PV applications. Electron. Mater. Lett. 12, 431–438 (2016). https://doi.org/10.1007/s13391-016-4002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-4002-3

Keywords

Navigation