Skip to main content
Log in

Chemically modified graphene based supercapacitors for flexible and miniature devices

  • Review Paper
  • 2015 POSCO Academic Award Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 2nd edn, 1999.

    Book  Google Scholar 

  2. Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and R. B. Kaner, Chem. Soc. Rev. 44, 3639 (2015).

    Article  Google Scholar 

  3. U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, Adv. Mater. 26, 40 (2014).

    Article  Google Scholar 

  4. W. J. Lee, U. N. Maiti, J. M. Lee, J. W. Lim, T. H. Han, and S. O. Kim, Chem. Commun., 50, 6818 (2014).

    Article  Google Scholar 

  5. Y. Wen, C. Huang, L. Wang, and D. H-Jurcakova, Chin. Sci. Bull. 59, 2102 (2014).

    Article  Google Scholar 

  6. X. Han, M. R. Funk, F. Shen, Y. C. Chen, Y. Li, C. J. Campbell, J. Dai, X. Yang, J. W. Kim, Y. Liao, J. W. Cornell, V. barone, Z. Chen, Y. Lin, and L. Hu, ACS Nano, 8, 8255 (2014).

    Article  Google Scholar 

  7. B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. Lee, and Y. S. Huh, Nanoscale, 4, 4983 (2012).

    Article  Google Scholar 

  8. W. Liu, X. Yan, J. Chen, Y. Feng, and Q. Xue, Nanoscale, 5, 6053 (2013).

    Article  Google Scholar 

  9. X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).

    Article  Google Scholar 

  10. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, ACS Nano 6, 4020 (2012).

    Article  Google Scholar 

  11. D. P. Dubal, J. G. Kim, Y. Kim, R. Holze, C. D. Lokhande, and W. B. Kim, Energy Technology 2, 325 (2014).

    Article  Google Scholar 

  12. R. C. Silva, A. M. Gomez, H. I. Kim, H. K. Jang, F. Tristan, S. V. Diaz, L. P. Rajukumar, A. L. Elías, N. P. Lopez, J. Suhr, M. Endo, and M. Terrones, ACS Nano 8, 5959 (2014).

    Article  Google Scholar 

  13. T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, and Z. Wei, Rsc Adv. 3, 23957 (2013).

    Article  Google Scholar 

  14. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, and L. Qu, Adv. Mater. 25, 2326 (2013).

    Article  Google Scholar 

  15. Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, and L. Qu, Nanoscale 6, 6448 (2014).

    Article  Google Scholar 

  16. Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, J. Mater. Chem. A 3, 2547 (2015).

    Article  Google Scholar 

  17. X. Ding, Y. Zhao, C. Hu, Y. Hu, Z. Dong, N. Chen, Z. Zhang, and L. Qu, J. Mater. Chem. A 2, 12355 (2014).

    Article  Google Scholar 

  18. K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, and C. Gao, Nanoscale 6, 8595 (2014).

    Article  Google Scholar 

  19. C. Wang, D. Li, C. O. Too, and G. G. Wallace, Chem. Matter. 21, 2604 (2009).

    Article  Google Scholar 

  20. Y. Wang, J. Chen, J. Cao, Y. Liu, Y. Zhao, J. H. Ouyang, and D. Jia, J. Power Sources 271, 269 (2014).

    Article  Google Scholar 

  21. Y.-Y. Peng, Y.-M. Liu, J.-K. Chang, C.-H. Wu, M.-D. Ger, N.-W. Pu, and C.-L. Chang, Carbon 81, 347 (2015).

    Article  Google Scholar 

  22. J. Zang, C. Cao, Y. Feng, J. Liu, and X. Zhao, Scientific Reports. 4, 6492 (2014).

    Article  Google Scholar 

  23. Z.-D. Huang, B. Zhang, S.-W. Oh, Q.-B. Zheng, X.-Y. Lin, N. Yousefi, and J.-K. Kim, J. Mater. Chem. 22, 3591 (2012).

    Article  Google Scholar 

  24. J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, and Y. Xie, Nano Energy 2, 65 (2013).

    Article  Google Scholar 

  25. G. S. Gund, D. P. Dubal, B. H. Patil, S. S. Shinde, and C. D. Lokhande, Electrochimica Acta 92, 205 (2013).

    Article  Google Scholar 

  26. L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Nano Lett. 13, 2151 (2013).

    Article  Google Scholar 

  27. C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, and Y. Xie, Nat. Commun. 4, 2431 (2013).

    Google Scholar 

  28. J. Bao, X. Zhang, L. Bai, W. Bai, M. Zhao, J. Xie, M. Guan, J. Zhao, and Y. Xie, J. Mater. Chem. A 2, 10876 (2014).

    Article  Google Scholar 

  29. T. Lee, T. Yun, B. Park, B. Sharma, H.-K. Song, and B.-S. Kim, J. Mater. Chem. 22, 21092 (2012).

    Article  Google Scholar 

  30. Y. Xu, M. G. Schwab, A. J. Strudwick, I. Hennig, X. Feng, Z. Wu, and K. Müllen, Adv. Energy Mater. 3, 1035 (2013).

    Article  Google Scholar 

  31. Z. Wang, Y. Su, D.-W. Wang, F. Li, J. Du, and H.-M. Cheng, Adv. Energy Mater. 1, 917 (2011).

    Article  Google Scholar 

  32. C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu, and J.-K. Chang, Chem. Sus. Chem. 8, 1779 (2015).

    Article  Google Scholar 

  33. Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, and X. Duan, Nat. Commun. 5, 4554 (2014).

    Google Scholar 

  34. Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, ACS Nano 7, 4042 (2013).

    Article  Google Scholar 

  35. Y. Xu, G. Shi, and X. Duan, Acc. Chem. Res. 48, 1666 (2015).

    Article  Google Scholar 

  36. L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, and C. Chen, Chem. Sus Chem. DOI: 10.1002/cssc.201500355

  37. U. N. Maiti, J. Lim, K. E. Lee, W. J. Lee, and S. O. Kim, Adv. Mater. 26, 615 (2014).

    Article  Google Scholar 

  38. Z.-S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, and K. Müllen, J. Am. Chem. Soc. 134, 19532 (2012).

    Article  Google Scholar 

  39. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Chin, J. K. Kang, and J. W. Choi, Nano Lett. 11, 2472 (2011).

    Article  Google Scholar 

  40. Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 24, 5130 (2012).

    Article  Google Scholar 

  41. S. Dao, X. Huang, Z. Ma, J. Wu, and S. Wang, Nanotechnology, 26, 045402 (2015).

    Article  Google Scholar 

  42. Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, and X. Duan, Adv. Mater. 25, 5779 (2013).

    Article  Google Scholar 

  43. Q. Wu, Y. Sun, H. Bai, and G. Shi, Phys. Chem. Chem. Phys. 13, 11193 (2011).

    Article  Google Scholar 

  44. B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, and H. S. Park, ACS Nano 5, 7205 (2011).

    Article  Google Scholar 

  45. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, Adv. Funct. Mater. 11, 1338 (2011).

    Article  Google Scholar 

  46. S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, and S. O. Kim, Angew. Chem. Int. Ed. 49, 10084 (2010).

    Article  Google Scholar 

  47. T. H. Han, W. J. Lee, D. H. Lee, J. E. Kim, E. Y. Choi, and S. O. Kim, Adv. Mater. 22, 2060 (2010).

    Article  Google Scholar 

  48. J.-H. Sung, S.-J. Kim, and K.-H. Lee, J. Power Sources 124, 343 (2003).

    Article  Google Scholar 

  49. M. F. El-Kady and R. B. Kaner, Nat. Commun. 4, 1475 (2013).

    Article  Google Scholar 

  50. Z. S. Wu, K. Parvez, X. L. Feng, and K. Müllen, Nat. Commun. 4, 2487 (2013).

    Google Scholar 

  51. Z.-S. Wu, K. Parvez, X. Feng, and K. Mullen, J. Mater. Chem. A 2, 8288 (2014).

    Article  Google Scholar 

  52. J. Lin, Z. Peng, Y. Liu, R. Ye, E. L. Samuel, F. Ruiz-Zepeda, M. J. Yacaman, B. I. Yakobson, and M. J. Tour, Nat. Commun. 5, 5714 (2014).

    Article  Google Scholar 

  53. Z. Peng, J. Lin, R. Ye, E. L. G. Samuel, and J. M. Tour, ACS Appl. Mater. Interfaces 7, 3414 (2015).

    Article  Google Scholar 

  54. S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, and X. Zhao, J. Mater. Chem. A 2, 18125 (2014).

    Article  Google Scholar 

  55. Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin, and J. M. Tour, ACS Nano 9, 5868 (2015).

    Article  Google Scholar 

  56. Z. S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 26, 4552 (2014).

    Article  Google Scholar 

  57. M. Beidaghi and C. Wang, Adv. Funct. Mater. 22, 4501 (2012).

    Article  Google Scholar 

  58. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, and James M. Tour, Nano Lett. 13, 72 (2013).

    Article  Google Scholar 

  59. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen, Nature Nanotechnology 9, 555 (2014).

    Article  Google Scholar 

  60. M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, and T. Cao, Adv. Funct. Mater. 22, 1284 (2012).

    Article  Google Scholar 

  61. I. N. Bkrey and A. A. Moniem, International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 8, 893 (2014).

    Google Scholar 

  62. W. Liu, C. Lu, X. Wang, R. Y. Tay, and B. K. Tay, ACS Nano 9, 1528 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ouk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Kim, S.O. Chemically modified graphene based supercapacitors for flexible and miniature devices. Electron. Mater. Lett. 11, 719–734 (2015). https://doi.org/10.1007/s13391-015-9999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-9999-1

Keywords

Navigation