Skip to main content
Log in

Aluminum induced crystallization of amorphous silicon dependent on annealing conditions with graphite plate

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Aluminum induced crystallization (AIC) of amorphous silicon was studied for thin-film solar cell. The AIC have been usually researched on glass substrate which has smooth surface. However, in this paper, the graphite plate was used as a substrate for using thin-film solar cell which has 1μm roughness. The growth silicon layer characteristic could be relatively different with that using glass substrate by the surface roughness. Therefore, the properties of crystallized silicon layer were studied for grain size analysis with variation in temperature and time during the AIC annealing process. The crystalline fraction and crystallinity was analyzed by Optical microscope, X-ray diffraction (XRD), and Raman spectrometer measurement methods. Additionally, the grain size was also relatively analyzed with FWHM results. As a result of measurements, crystalline fraction of grown silicon was increased with the increasing of temperature and time. The maximum crystalline fraction of grown silicon was 92.85% for 2400 minutes of annealing duration at 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Prog. Photovoltaics 15, 575 (2007).

    Article  Google Scholar 

  2. L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, Thin Solid Films 511, 21 (2006).

    Article  Google Scholar 

  3. A. Eyer, F. Haas, T. Kieliba, D. Oßwald, S. Reber, W. Zimmermann, and W. Warta, J. Crystal Growth 225, 340 (2001).

    Article  Google Scholar 

  4. R. Ludemann, S. Schaefer, C. Schule, and C. Hebling, IEEE. Phot. Spec. Conf., CA, USA (1997) (unpublished).

    Google Scholar 

  5. A. Focsa, I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui, and J. Poortmans, Thin Solid Films 516, 6896 (2008).

    Article  Google Scholar 

  6. S. Reber, W. Zimmermann, and T. Kieliba, Sol. Energ. Mat. Sol C. 65, 409 (2001).

    Article  Google Scholar 

  7. Z. Shi and M. A. Green, Prog. Photovoltaics 6, 247 (1998).

    Article  Google Scholar 

  8. D. Young, C. Teplin, S. Grover, B. Lee, J. Oh, V. Lasalvia, D. Amkreutz, S. Gall, M. Chahal, and G. Couillard, Photovoltaic Specialists Conference (2013).

    Google Scholar 

  9. A. Focsa, I. Gordon, J. Auger, A. Slaoui, G. Beaucarne, J. Poortmans, and C. Maurice, Renew. Energ. 33, 267 (2008).

    Article  Google Scholar 

  10. D. Amkreutz, J. Müller, M. Schmidt, T. Hänel, and T. Schulze, Prog. Photovoltaics 19, 937 (2011).

    Article  Google Scholar 

  11. C. Strobel, 28th EUPVSEC, pp. 2573–2579 (2013).

    Google Scholar 

  12. T. Matsui and M. Kondo, Sol. Energ. Mat. Sol. C. 119, 156 (2013).

    Article  Google Scholar 

  13. H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, Appl. Phys. Express 6, 104101 (2013).

    Article  Google Scholar 

  14. J. Dore, D. Ong, S. Varlamov, R. Egan, and M. A. Green, IEEE J. Photovoltaics, 4, 33 (2014).

    Article  Google Scholar 

  15. J. Haschke, L. Jogschies, D. Amkreutz, L. Korte, and B. Rech, Sol. Energ. Mat. Sol. C. 115, 7 (2013).

    Article  Google Scholar 

  16. T. R. S. Lindekugel, S. Janz, and S. Reber, 27th EU PVSEC, pp. 2459–2462 (2012).

    Google Scholar 

  17. A. Gawlik, J. Plentz, I. Höger, G. Andrä, T. Schmidt, U. Brückner, and F. Falk, Phys. Status Solidi (a) 212, 162 (2015).

    Article  Google Scholar 

  18. J. B. T. Schmidt, A. Gawlik, I. Höger, G. Andrä, D. Hauschild, and V. Lissotschenko, EU PVSEC pp. 1620–1622, (2014).

    Google Scholar 

  19. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, J. Appl. Phys. 84, 194 (1998).

    Article  Google Scholar 

  20. A. R. Joshi and K. C. Saraswat, IEEE T. Electron Dev. 50, 1058 (2003).

    Article  Google Scholar 

  21. S. W. Lee, Y. C. Jeon, and S. K. Joo, Appl. Phys. Lett. 66, 1671 (1995).

    Article  Google Scholar 

  22. D. Van Gestel, I. Gordon, H. Bender, D. Saurel, J. Vanacken, G. Beaucarne, and J. Poortmans, J. Appl. Phys. 105, 114507 (2009).

    Article  Google Scholar 

  23. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Thin Solid Films 516, 6984 (2008).

    Article  Google Scholar 

  24. O. Nast and A. J. Hartmann, J. Appl. Phys. 88, 716 (2000).

    Article  Google Scholar 

  25. C. Ornaghi, G. Beaucarne, J. Poortmans, J. Nijs, and R. Mertens, Thin Solid Films 451, 476 (2004).

    Article  Google Scholar 

  26. J. Yun, S. Varalmov, J. Huang, K. Kim, and M. Green, Appl. Phys. Lett. 104, 242102 (2014).

    Article  Google Scholar 

  27. H.-S. Hwang, M. G. Park, H. Ruh, and H. Yu, Kor. Chem. Soc. 31, 2909 (2010).

    Article  Google Scholar 

  28. Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn, Electron. Mater. Lett. 10, 1103 (2014).

    Article  Google Scholar 

  29. J.-D. Kwon, Electron. Mater. Lett. 9, 875 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.W., Bhopal, M.F. & Lee, S.H. Aluminum induced crystallization of amorphous silicon dependent on annealing conditions with graphite plate. Electron. Mater. Lett. 12, 127–132 (2016). https://doi.org/10.1007/s13391-015-5325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5325-1

Keywords

Navigation