Skip to main content
Log in

Enhanced photoresponse of Cu(In,Ga)Se2/CdS heterojunction fabricated using economical non-vacuum methods

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The present study demonstrates the fabrication of a CIGS/CdS heterojunction with enhanced photoelectrochemical performance using low-cost non-vacuum methods. A simplified economical pulse electrodeposition technique, with a two-electrode system in an additive-free electrolyte, has been used for the preparation of chalcopyrite Cu(In,Ga)Se2 (CIGS) thin-films avoiding the selenization process and CdS subsequently chemical bath deposited onto these CIGS films. Photoelectrochemical (PEC) performance of bare CIGS and the CIGS/CdS heterojunction has been investigated in conventional Na2SO4 electrolyte under chopped solar simulated light. The PEC analysis reveals nearly twenty-fold increase in the photoresponse of the CIGS/CdS heterojunction compared to bare CIGS films. The CIGS/CdS junction has also been tested in a PEC cell using a novel sulphide/sulphite electrolyte for the first time and found to yield further enhancement in photocurrent density with exceptional stability. Thus, apart from fabrication of an efficient CIGS/CdS heterojunction economically, the present study proposes use of a novel electrolyte yielding superior performance and showing potential for commercialization of CIGS devices and their use in photoelectrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, Phys. Status Solidi-R 8, 219 (2014).

    Article  Google Scholar 

  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt. Res. Appl. 21, 827 (2013).

    Article  Google Scholar 

  3. P. Reinhard, A. Chirila, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Twentieth IEEE International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 79, Kyoto, Japan (2013).

    Google Scholar 

  4. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buechelerm, and A. N. Tiwari, Nat. Mater. 12, 1107 (2013).

    Article  Google Scholar 

  5. P. Jackson, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovol: Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  6. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Nat. Mater. 10, 857 (2011).

    Article  Google Scholar 

  7. T. Nakada, Electron. Mater. Lett. 8, 179 (2012).

    Article  Google Scholar 

  8. D. Abou-Ras, T. Kirchartz, and U. Rau, Advanced Characterization Techniques for Thin FIlm Solar Cells, Wiley-VCH Verlag, Weinheim, Germany (2011).

    Book  Google Scholar 

  9. I. M. Dharmadasa, Advances in Thin-Film Solar Cells, Pan Stanford Publishing, Singapore (2013).

    Google Scholar 

  10. S. Aksu, S. Pethe, A. Kleiman-Shwarsctein, S. Kundu, and M. Pinarbasi, 38th IEEE Photovotaics Specialists Conference, 003092, Austin TX, USA (2012).

    Google Scholar 

  11. R. N. Bhattacharya, Sol. Energ. Mat. Sol. Cells 113, 96 (2013).

    Article  Google Scholar 

  12. R. N. Bhattacharya, M.-K. Oh, and Y. Kim, Sol. Energ. Mat. Sol. Cells 98, 198 (2012).

    Article  Google Scholar 

  13. R. N. Bhattacharya, J. Electrochem. Soc. 157, 406 (2010).

    Article  Google Scholar 

  14. R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason, and R. N. Noufi, J. Electrochem. Soc. 144, 1376 (1997).

    Article  Google Scholar 

  15. H. Lee, H. Yoon, C. Ji, D. Lee, J.-H. Lee, J.-H. Yun, and Y. Kim, J. Electron. Mater. 41, 3375 (2012).

    Article  Google Scholar 

  16. N. Stratieva, E. Tzvetkova, M. Ganchev, K. Kochev, and I. Tomov, Sol. Energ. Mat. Sol. Cells 45, 87 (1997).

    Article  Google Scholar 

  17. C. Guillen and J. Herrero, Sol. Energ. Mat. Sol. Cells 43, 47 (1996).

    Article  Google Scholar 

  18. R. Friedfeld, R. P. Raffaelle, and J. G. Mantovani, Sol. Energ. Mat. Sol. Cells 58, 375 (1999).

    Article  Google Scholar 

  19. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, and O. Kerrec, Sol. Energy 77, 725 (2004).

    Article  Google Scholar 

  20. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Renew. Sustain. Energy 5, 031602 (2013).

    Article  Google Scholar 

  21. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Electrochem. Soc. 160, 173 (2013).

    Article  Google Scholar 

  22. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, J. Power. Sources 273, 149 (2015).

    Article  Google Scholar 

  23. T. J. Jacobsson, C. Platzer-Bjorkman, M. Edoff, and T. Edvinsson, Int. J. Hydrogen Energ. 38, 15027 (2013).

    Article  Google Scholar 

  24. H. Ye, H. S. Park, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, B. A. Korgel, and A. J. Bard, J. Phys. Chem. C 115, 234 (2011).

    Article  Google Scholar 

  25. R. C. Alkire, D. M. Kolb, J. Lipkowski, and P. N. Ross, Advances in Electrochemical Science and Engineering: Photoelectrochemical Materials and Energy Conversion Processes, WILEY-VCH Verlag, Weinheim, Germany (2010).

    Book  Google Scholar 

  26. F. Liu, C. Huang, Y. Lai, Z. Zhang, J. Li, and Y. Liu, J. Alloy Compd. 509, 129 (2011).

    Article  Google Scholar 

  27. R. Inguanta, P. Livreri, S. Piazza, and C. Sunseri, Electrochem. SolidSt. 13, 22 (2010).

    Article  Google Scholar 

  28. X. Chen and W. Shangguan, Front. Energy 7, 111 (2013).

    Article  Google Scholar 

  29. H. Sheng, L. Yu, Y. Jian-Hua, and Y. Ying, in Nanotechnology for Sustainable Energy, p. 219, American Chemical Society (2013).

    Google Scholar 

  30. D. Prasher and P. Rajaram, Electron. Mater. Lett., 8, 515 (2012).

    Article  Google Scholar 

  31. S. Jeong, H. Choi, J. Hwang, J. Park, K. Im, Y. Jung, and M. Jeon, Electron. Mater. Lett. 9, 883 (2013).

    Article  Google Scholar 

  32. Y.-P. Fu, R.-W. You, and K. K. Lew, J. Electrochem. Soc. 156, 553 (2009).

    Article  Google Scholar 

  33. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, Mat. Lett. 118, 158 (2014).

    Article  Google Scholar 

  34. L. M. Peter and K. G. Upul Wijayantha, ChemPhysChem, 15, 1983 (2014).

    Article  Google Scholar 

  35. M. Gloeckler and J. R. Sites, Thin Solid Films 481, 241 (2005).

    Article  Google Scholar 

  36. A. Hagfeldt, H. Lindström, S. Södergren and S. Lindquist, J. Electroanal. Chem. 381, 39 (1995).

    Article  Google Scholar 

  37. R. Beranek and H. Kisch, Electrochem. Commun. 9, 761 (2007).

    Article  Google Scholar 

  38. A. Pareek, R. Purbia, P. Paik, N. Y. Hebalkar, H. G. Kim, and P. H. Borse, Int. J. Hydrogen Energ. 39, 4170 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bulusu V. Sarada or Suhash R. Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandati, S., Sarada, B.V., Dey, S.R. et al. Enhanced photoresponse of Cu(In,Ga)Se2/CdS heterojunction fabricated using economical non-vacuum methods. Electron. Mater. Lett. 11, 618–624 (2015). https://doi.org/10.1007/s13391-014-4387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4387-9

Keywords

Navigation