Skip to main content
Log in

Ce-Substituted Co0.5Ni0.5Fe2O4: Structural, morphological, electrical, and dielectric properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Functional nano ceramics, especially rare earth substituted ferrites, have numerous applications in microelectronics. They have certain novel characteristics associated with various rare earth substitutions associated with electronics. A series of cerium-substituted cobalt nickel ferrite nanoparticles with nominal composition CexCo0.5Ni0.5Fe2-xO4 (where x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared in powder form by chemical co-precipitation and sol-gel auto combustion methods. Samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), dielectric properties, and DC electrical resistivity. XRD analysis of all the samples confirms the formation of the spinel structure of Fd-3m space group. Crystallite size “t” was found to decrease, whereas both x-ray density “D x ” and lattice constant “a” were found to increase by increasing Ce concentration from 8.35 Å to 8.36 Å and 8.37 Å for sol-gel and coprecipitation, respectively. SEM results show the presence of uniformly distributed and almost spherical-shaped particles for both techniques. FTIR measurements were used to further confirm the composition, i.e., cation substitution. The DC electrical resistivity of the x = 0.00 sample is higher than Ce-substituted ferrite samples and in the range of 108 O-cm at 373 K. Dielectric spectroscopy is also studied from 100 Hz to 5 MHz as a function of frequency. To our knowledge, this is the first reported research of this particular composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Amiri and H. Shokrollahi, Mater. Sci. Eng.: C 33, 1 (2013).

    Article  Google Scholar 

  2. K. K. Bharathi and C. V. Ramana, J. Mater. Res. 26, 584 (2011).

    Article  Google Scholar 

  3. E. Pervaiz and I. H. Gul, J. Magn. Magn. Mater. 343, 194 (2013).

    Article  Google Scholar 

  4. C. Ramankutty and S. Sugunan, Applied Catalysis A: General 218, 39 (2001).

    Article  Google Scholar 

  5. I. H. Gul, W. Ahmed, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008).

    Article  Google Scholar 

  6. M. A. Gabal and Y. M. A. Angari, Mater. Chem. Phys. 118, 153 (2009).

    Article  Google Scholar 

  7. I. H. Gul and E. Pervaiz, Mater. Res. Bull. 47, 1353 (2012).

    Article  Google Scholar 

  8. Y. M. Abbas, S. A. Mansour, M. H. Ibrahim, and S. E. Ali, J. Magn. Magn. Mater. 323, 2748 (2011).

    Article  Google Scholar 

  9. A. Thakur, P. Thakur, and J.-H. Hsu, J. Appl. Phys. 111, 07A305 (2012).

  10. L. Kumar, P. Kumar, A. Narayan, and M. Kar, Int. Nano Lett. 3, 1 (2013).

    Article  Google Scholar 

  11. S. Singhal, J. Singh, S. K. Barthwal, and K. Chandra, J. Solid State Chem. 178, 3183 (2005).

    Article  Google Scholar 

  12. K. Muthuraman, S. Alagarsamy, M. A. Banu, and V. Naidu, Synthesis 32, 3 (2011).

    Google Scholar 

  13. D. R. Mane, D. D. Birajdar, S. Patil, S. E. Shirsath, and R. H. Kadam, J. Sol-Gel Sci. Technol. 58, 70 (2010).

    Article  Google Scholar 

  14. T. P. Almeida, M. W. Fay, Y. Zhu, and P. D. Brown, Nanotechnology (IEEE-NANO), p. 1, 2012 12th IEEE Conference on, IEEE2012.

    Google Scholar 

  15. M. Hashim, Alimuddin, S. Kumar, S. E. Shirsath, R. K. Kotnala, J. Shah, and R. Kumar, Mater. Chem. Phys. 139, 364 (2013).

    Article  Google Scholar 

  16. K. M. Batoo and S. Kumar, Int. J. Nanoparticles 2, 416 (2009).

    Article  Google Scholar 

  17. S. Kubickova, J. Vejpravova, P. Holec, and D. Niznansky, J. Magn. Magn. Mater. 334, 102 (2013).

    Article  Google Scholar 

  18. P. P. Hankare, K. R. Sanadi, K. M. Garadkar, D. R. Patil, and I. S. Mulla, J. Alloys Compd. 553, 383 (2013).

    Article  Google Scholar 

  19. D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, and S. Fukuzumi, J. Am. Chem. Soc. 134, 19572 (2012).

    Article  Google Scholar 

  20. Y. S. Fu and X. Wang, Ind. Eng. Chem. Res. 50, 7210 (2011).

    Article  Google Scholar 

  21. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, J. Phys. Chem. C 114, 21390 (2010).

    Article  Google Scholar 

  22. Y. Fu, H. Chen, X. Sun, and X. Wang, AIChE J. 58, 3298 (2012).

    Article  Google Scholar 

  23. I. H. Gul and A. Maqsood, J. Alloys Compd. 465, 227 (2008).

    Article  Google Scholar 

  24. B.-H. Ryu, H.-J. Chang, Y.-M. Choi, K.-J. Kong, J.-O. Lee, C. G. Kim, H.-K. Jung, and J.-H. Byun, Physica Status Solidi (a) 201, 1855 (2004).

    Article  Google Scholar 

  25. Y. Yang, L. Ren, C. Zhang, S. Huang, and T. Liu, ACS Appl. Mater. Interf. 3, 2779 (2011).

    Article  Google Scholar 

  26. M. Fu, Q. Jiao, and Y. Zhao, J. Mater. Chem. A 1, 5577 (2013).

    Article  Google Scholar 

  27. Y. Fu, X. Sun, and X. Wang, Mater. Chem. Phys. 131, 325 (2011).

    Article  Google Scholar 

  28. M. Naeem, N. A. Shah, I. H. Gul, and A. Maqsood, J. Alloys Compd. 487, 739 (2009).

    Article  Google Scholar 

  29. J. Xiang, Y. Q. Chu, X. Q. Shen, G. Z. Zhou, and Y. T. Guo, J. Colloid Interf. Sci. 376, 57 (2012).

    Article  Google Scholar 

  30. R. S. Devan, Y. D. Kolekar, and B. K. Chougule, J. Phys-Condens Mat. 18, 9809 (2006).

    Article  Google Scholar 

  31. M. N. Ashiq, M. F. Ehsan, M. J. Iqbal, and I. H. Gul, J. Alloys Compd. 509, 5119 (2011).

    Article  Google Scholar 

  32. M. L. Kahn and Z. J. Zhang, Appl. Phys. Lett. 78, 3651 (2001).

    Article  Google Scholar 

  33. T. P. Almeida, M. W. Fay, Y. Zhu, and P. D. Brown, J. Phys.: Conference Series 371, 012074 (2012).

  34. K. Nejati and R. Zabihi, Chem. Central J. 6, 23 (2012).

    Article  Google Scholar 

  35. K. Maaz, S. Karim, A. Mashiatullah, J. Liu, M. D. Hou, Y. M. Sun, J. L. Duan, H. J. Yao, D. Mo, and Y. F. Chen, Physica B 404, 3947 (2009).

    Article  Google Scholar 

  36. H. E. Zhang, B. F. Zhang, G. F. Wang, X. H. Dong, and Y. Gao, J. Magn. Magn. Mater. 312, 126 (2007).

    Article  Google Scholar 

  37. P. P. Hankare, U. B. Sankpal, R. P. Patil, I. S. Mulla, P. D. Lokhande, and N. S. Gajbhiye, J. Alloys Compd. 485, 798 (2009).

    Article  Google Scholar 

  38. Y. Köseoglu, M. I. Oleiwi Oleiwi, R. Yilgin, and A. N. Koçbay, Ceramics Int. 38, 6671 (2012).

    Article  Google Scholar 

  39. I. H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, and A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007).

    Article  Google Scholar 

  40. I. H. Gul, F. Amin, A. Z. Abbasi, M. Anis-ur-Rehman, and A. Maqsood, Scripta Materialia 56, 497 (2007).

    Article  Google Scholar 

  41. R. Waldron, Phys.Rev. 99, 1727 (1955).

    Article  Google Scholar 

  42. E. Pervaiz and I. H. Gul, J. Phys.: Conference Series 439, 012015 (2013).

  43. A. A. Kadam, S. S. Shinde, S. P. Yadav, P. S. Patil, and K. Y. Rajpure, J. Magn. Magn. Mater. 329, 59 (2013).

    Article  Google Scholar 

  44. M. F. Al-Hilli, S. Li, and K. S. Kassim, J. Magn. Magn. Mater. 324, 873 (2012).

    Article  Google Scholar 

  45. E. Pervaiz and I. H. Gul, Int. J. Current Eng. Technol. 2, (2012).

  46. E. Kiani, A. S. H. Rozatian, and M. H. Yousefi, Journal of Superconductivity and Novel Magnetism 26, 733 (2012).

    Article  Google Scholar 

  47. V. Naidu, S. K. A. Ahamed, K. Sahib, M. Suganthi, and C. Prakash, Int. J. Comput. Appl. 27, 40 (2011).

    Google Scholar 

  48. I. Gul, A. Maqsood, M. Naeem, and M. N. Ashiq, J. Alloys Compd. 507, 201 (2010).

    Article  Google Scholar 

  49. E. Pervaiz and I. H. Gul, J. Magn. Magn. Mater. 324, 3695 (2012).

    Article  Google Scholar 

  50. V. Verma, K. Kotnala, V. Pandey, P. C. Kothari, L. Radhapiyari, and B. S. Matheru, J. Alloys Compd. 466, 404 (2008).

    Article  Google Scholar 

  51. G. Sathishkumar, C. Venkataraju, and K. Sivakumar, J. Mater. Sci.: Mater. Electr. 24, 1057 (2012).

    Google Scholar 

  52. K. K. Bamzai, G. Kour, B. Kaur, M. Arora, and R. P. Pant, J. Magn. Magn. Mater. 345, 255 (2013).

    Article  Google Scholar 

  53. E. Pervaiz, I. H. Gul, and H. Anwar, J. Superconductivity and Novel Magnetism, 26, 415 (2012).

    Article  Google Scholar 

  54. L. Van Uitert, J. Chem. Phys. 24, 306 (1956).

    Article  Google Scholar 

  55. M. A. Ahmed, N. Okasha, and M. M. El-Sayed, Ceramics Int. 33, 49 (2007).

    Article  Google Scholar 

  56. C. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Samar Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.S., Gul, I.H., Ameer, S. et al. Ce-Substituted Co0.5Ni0.5Fe2O4: Structural, morphological, electrical, and dielectric properties. Electron. Mater. Lett. 11, 100–108 (2015). https://doi.org/10.1007/s13391-014-3340-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3340-2

Keywords

Navigation