Skip to main content
Log in

Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The thin films were annealed in various atmospheres such as argon, nitrogen, and vacuum, and their structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and photoluminescence. The ZnO thin films grown on PS showed a mountain-range-like surface morphology, whereas those grown on Si showed a typical 3D island surface structure. The thin films grown on PS exhibited only one diffraction peak at 34°, whereas those grown on Si showed shoulders of the ZnO (002) diffraction peaks at around 33°; this implies an excellent c-axis preferred orientation and a better crystal quality when PS was used. Large crystals were partially formed at an annealing temperature of 700°C. The films annealed in a vacuum showed nanorod-like ZnO crystals, whereas those annealed in nitrogen and oxygen showed irregularly shaped crystals. It was confirmed that the structural and optical properties of the thin films were enhanced by the annealing process. In particular, relatively large changes in the full width at half maximum of the ZnO (002) diffraction peaks and UV emission peaks, indicating enhanced structural and optical properties, respectively, were observed when the thin films were annealed in argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 2635 (1999).

    Article  CAS  Google Scholar 

  2. E. M. Wong and P. C. Seatson, Appl. Phys. Lett. 74, 2939 (1999).

    Article  CAS  Google Scholar 

  3. S. Lee, Y. Lee, D. Y. Kim, and T. W. Kang, Appl. Phys. Lett. 96, 142102 (2010).

    Article  Google Scholar 

  4. W. W. Wenas, A. Yamada, K. Takasashi, M. Yoshino, and M. Konagai, J. Appl. Phys. 70, 7119 (1991).

    Article  CAS  Google Scholar 

  5. J. Jenny, R. Jones, J. E. Van Nostrand, D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Commun. 106, 701 (1998).

    Article  Google Scholar 

  6. G.-H. Lee, Electron. Mater. Lett. 6, 155 (2010).

    Article  CAS  Google Scholar 

  7. J. Zhu, I.-H. Lee, R. Yao, and Z. Fu, J. Korean Phys. Soc. 50, 598 (2007).

    Article  CAS  Google Scholar 

  8. V. V. Siva Kumar, F. Singh, A. Kumar, and D. K. Avasthi, Nucl. Instrum. Methods Phys. Res. Sect. B 244, 91 (2006).

    Article  Google Scholar 

  9. J.-I. Son, J.-H. Shim, and N.-H. Cho, Met. Mater. Int. 17, 99 (2011).

    Article  CAS  Google Scholar 

  10. W. Zhaoyang, S. Liyuan, and H. Lizhong, Vacuum 85, 397 (2011).

    Article  Google Scholar 

  11. W. Shena, Y. Zhaoa, and T. Zhang, Thin Solid Films 483, 382 (2005).

    Article  Google Scholar 

  12. Y. Li, L. Xu, X. Li, X. Shen, and A. Wang, Appl. Sur. Sci. 256, 4543 (2010).

    Article  CAS  Google Scholar 

  13. G. M. Nam and M. S. Kwon, Electron. Mater. Lett. 7, 127 (2011).

    Article  CAS  Google Scholar 

  14. M. S. Kim, K. G. Yim, M. Y. Cho, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, J. Korean Phys. Soc. 58, 515 (2011).

    Article  CAS  Google Scholar 

  15. S.-J. An, W. I. Park, G.-C. Yi, and S. Cho, Appl. Phys. A 74, 509 (2002).

    Article  CAS  Google Scholar 

  16. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D.-Y. Lee, J.-S. Son, J. I. Lee, J. H. Kim, E. Kim, D.-W. Hwang, and J.-Y. Leem, J. Cryst. Growth 311, 3568 (2009).

    Article  CAS  Google Scholar 

  17. M. Y. Cho, M. S. Kim, H. Y. Choi, S. M. Jeon, G. S. Kim, D. Y. Kim, K. G. Yim, D.-Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 56, 1833 (2010).

    Article  CAS  Google Scholar 

  18. X. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, Jpn. J. Appl. Phys. 41, L1043 (2001).

    Article  Google Scholar 

  19. A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga, and H. J. Ko, J. Appl. Phys. 96, 3763 (2004).

    Article  CAS  Google Scholar 

  20. Y. M. Lu, X. Wang, Z. Z. Zhang, D. Z. Shen, S. C. Su, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, J. Cryst. Growth 301–302, 373 (2007).

    Article  Google Scholar 

  21. F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis, and R. C. Haddon, J. Cryst. Growth 286, 61 (2006).

    Article  CAS  Google Scholar 

  22. E. Ş. Tüzemen, S. Eker, H. Kavak, and R. Esen, Appl. Surf. Sci. 255, 6195 (2009).

    Article  Google Scholar 

  23. S. M. Yang, S. K. Han, D. S. Kang, J. G. Kim, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, and T. Yao, J. Korean Phys. Soc. 53, 276 (2008).

    CAS  Google Scholar 

  24. A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and Y. Hatanaka, J. Cryst. Growth 214–215, 294 (2000).

    Article  Google Scholar 

  25. Y. Feng, Y. Zhou, Y. Liu, G. Zhang, and X. Zhang, J. Lumin. 119–120, 233 (2006).

    Article  Google Scholar 

  26. D. J. Park, J. Y. Lee, T. E. Park, Y. Y. Kim, and H. K. Cho, Thin Solid Films 515, 6721 (2007).

    Article  CAS  Google Scholar 

  27. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, and M. H. Cheng, J. Lumin. 129, 148 (2009).

    Article  CAS  Google Scholar 

  28. M. S. Kim, G. S. Kim, M. Y. Cho, D. Y. Kim, H. Y. Choi, S. M. Jeon, K. G. Yim, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, J. I. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 56, 827 (2010).

    Article  CAS  Google Scholar 

  29. Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).

    Article  CAS  Google Scholar 

  30. L. S. Chuah, Z. Hassan, and S. N. H. A. Hassan, J. Alloy. Compd. 479, L54 (2009).

    Article  CAS  Google Scholar 

  31. M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, and J.-Y. Leem, Bull. Korean Chem. Soc. 32, 880 (2011).

    Article  CAS  Google Scholar 

  32. C.-C. Wu, D.-S. Wuu, P.-R. Lin, T.-N. Chen, and R.-H. Horng, Chem. Vap. Deposition 15, 234 (2009).

    Article  CAS  Google Scholar 

  33. K. P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian. Mater. Sci. Semicond. Process 14, 84 (2011).

    Article  CAS  Google Scholar 

  34. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Gai, and N. F. Chen, Appl. Surf. Sci. 255, 5876 (2009).

    Article  CAS  Google Scholar 

  35. K. Shin, K. Prabakar, W. P. Tai, J. H. Oh, C. Lee, D. W. Park, and W. S. Ahn, J. Korean Phys. Soc. 45, 1288 (2004).

    CAS  Google Scholar 

  36. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Nanotechnology 17, 147 (2006).

    Article  Google Scholar 

  37. R. G. Singh, F. Singh, D. Kanjilal, V. Agarwal, and R. M. Mehra, J. Phys. D: Appl. Phys. 42, 062002 (2009).

    Article  Google Scholar 

  38. S. Anas, R. V. Mangalaraja, and S. Ananthakumar, J. Hazard. Mater. 175, 889 (2010).

    Article  CAS  Google Scholar 

  39. M. Z. Sahdan, M. H. Mamat, M. Salina, Z. Khusaimi, U. M. Noor, and M. Rusop, Phys. Stat. Sol. (c) 7, 2286 (2010).

    Article  Google Scholar 

  40. Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. J. Zhang, Opt. Mater. 26, 23 (2004).

    Article  Google Scholar 

  41. S. H. Jeong, B. S. Kim, and B. T. Lee, Appl. Phys. Lett. 82, 2625 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.S., Kim, T.H., Kim, D.Y. et al. Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy. Electron. Mater. Lett. 8, 123–129 (2012). https://doi.org/10.1007/s13391-012-1089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-1089-z

Keywords

Navigation