Skip to main content
Log in

Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér–Lundberg), and high precision approximations with both light and heavy tails

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

We revisit below Padé and other rational approximations for ruin probabilities, of which the approximations mentioned in the title are just particular cases. We provide new simple Tijms-type and moments based approximations, and show that shifted Padé approximations are quite successful even in the case of heavy tailed claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. However, if required, best admissible approximations to non-admissible ones may be obtained by the package SOPE [17].

  2. This method itself exploits a rational approximation [29].

  3. Note however that these approximations are light-tailed; therefore, difficulties are to be expected in the case of heavy tailed Lévy measures. Other challenging cases are that of Lévy measures with compact support, or with atoms.

  4. This method bears some similarity to the Post-Widder method of inverting Laplace transforms, advocated by Jagerman, where \(\xi \rightarrow \infty \).

  5. http://webspn.hit.bme.hu/~telek/tools/butools/index.php

References

  1. Abate J, Valkó P (2004) Multi-precision laplace transform inversion. Int J Numer Methods Eng 60(5):979–993

    Article  MATH  Google Scholar 

  2. Abate J, Whitt W (1997) Asymptotics for \(M/G/1\) low-priority waiting-time tail probabilities. Queue Syst 25(1):173–233

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramowitz M, Stegun I (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Vol. 55. Dover publications

  4. Albrecher H, Asmussen S (2010) Ruin probabilities. Vol. 14. World Scientific

  5. Albrecher H, Avram F, Kortschak D (2010) On the efficient evaluation of ruin probabilities for completely monotone claim distributions. J Comput Appl Math 233(10):2724–2736

    Article  MathSciNet  MATH  Google Scholar 

  6. Avram F, Chedom D, Horvath A (2011) On moments based Padé approximations of ruin probabilities. J Comput Appl Math 235(10):3215–3228

    Article  MathSciNet  MATH  Google Scholar 

  7. Avram F, Horvath A, Pistorius M (2012) On matrix exponential approximations of the infimum of a spectrally negative levy process. arXiv preprint arXiv:1210.2611

  8. Avram F, Minca A (2015) Steps towards a management toolkit for central branch risk networks, using rational approximations and matrix scale functions. In: Piunovskyi AB (ed) Modern trends in controlled stochastic processes: theory and applications, pp 263–285

  9. Avram F, Minca A (2016) On the management of central branch risk networks. Advances in Applied probability, in print

  10. Avram F, Pistorius M (2014a) On matrix exponential approximations of ruin probabilities for the classic and brownian perturbed cramér–lundberg processes. Insur: Math Econ 59:57–64

    MATH  Google Scholar 

  11. Avram F, Pistorius M (2014b) On matrix exponential approximations of ruin probabilities for the classic and brownian perturbed cramér–lundberg processes. Insur: Math Econ 59:57–64

    MATH  Google Scholar 

  12. Bobbio A, Horváth A, Telek M (2005a) Matching three moments with minimal acyclic phase type distributions. Stoch Models 21:303–326

    Article  MathSciNet  MATH  Google Scholar 

  13. Bobbio A, Horváth A, Telek M (2005b) Matching three moments with minimal acyclic phase type distributions. Stoch models 21(2–3):303–326

    Article  MathSciNet  MATH  Google Scholar 

  14. Bobbio A, Telek M (1994) A benchmark for ph estimation algorithms: results for acyclic-ph. Stoch models 10(3):661–677

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen A (2007) Numerical methods for Laplace transform inversion. Springer, Berlin

    MATH  Google Scholar 

  16. Dufresne F, Gerber H (1991) Risk theory for the compound poisson process that is perturbed by diffusion. Insur: Math Econ 10(1):51–59

    MathSciNet  MATH  Google Scholar 

  17. Dumitrescu B, Şicleru BC, Avram F (2016) Modeling probability densities with sums of exponentials via polynomial approximation. J Comput Appl Math 292:513–525

    Article  MathSciNet  MATH  Google Scholar 

  18. Feldmann A, Whitt W (1998) Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform Eval 31(3–4):245–279

    Article  Google Scholar 

  19. Gonnet P, Guttel S, Trefethen LN (2013) Robust padé approximation via SVD. SIAM Rev 55(1):101–117

    Article  MathSciNet  MATH  Google Scholar 

  20. Grandell J (2000) Simple approximations of ruin probabilities. Insur: Math Econ 26(2):157–173

    MathSciNet  MATH  Google Scholar 

  21. Gzyl H, Novi-Inverardi P-L, Tagliani A (2013) Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments. Insur: Math Econ 53(2):457–463

    MathSciNet  MATH  Google Scholar 

  22. Hackmann D, Kuznetsov A (2016) Approximating lévy processes with completely monotone jumps. Ann Appl Probab 26(1):328–359

    Article  MathSciNet  MATH  Google Scholar 

  23. Horváth A, Telek M (2000) Approximating heavy tailed behavior with phase type distributions. In: Proc. of 3rd international conference on matrix-analytic methods in stochastic models. Leuven, Belgium

  24. Horváth G, Telek M (2016) Butools 2: a rich toolbox for markovian performance evaluation. In: Value tools

  25. Hu X, Duan B, Zhang L (2017) De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information. Insur: Math Econ 76:48–55

    MathSciNet  MATH  Google Scholar 

  26. Lundberg F (1903) I. Approximerad framstallning af sannolikhetsfunktionen: II. Aterforsakring af kollektivrisker. Uppsala

  27. Nadarajah S, Kotz S (2006) On the Laplace transform of the pareto distribution. Queue Syst 54(4):243–244

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramsay CM (2007) Exact waiting time and queue size distributions for equilibrium M/G/1 queues with Pareto service. Queue Syst 57(4):147–155

    Article  MathSciNet  MATH  Google Scholar 

  29. Trefethen L, Weideman J, Schmelzer T (2006) Talbot quadratures and rational approximations. BIT Numer Math 46(3):653–670

    Article  MathSciNet  MATH  Google Scholar 

  30. Usábel M (1999) Calculating multivariate ruin probabilities via Gaver–Stehfest inversion technique. Insur: Math Econ 25(2):133–142

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Ulysses Solon for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Horvath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avram, F., Banik, A.D. & Horvath, A. Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér–Lundberg), and high precision approximations with both light and heavy tails. Eur. Actuar. J. 9, 273–299 (2019). https://doi.org/10.1007/s13385-018-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-018-0180-8

Keywords

Navigation