Skip to main content
Log in

Rough statistical convergence of a sequence of random variables in probability

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, following the works of Phu (Numer Funct Anal Optimiz 22:201–224, 2001), Aytar (Numer Funct Anal Optimiz 29(34):291–303, 2008) and Ghosal (Appl Math 58(4):423–437, 2013) we make a new approach to extend the application area of rough statistical convergence usually used in sequence of real numbers to the theory of probability distributions. The introduction of these concepts in probability of rough statistical convergence, rough strong Cesàro summable, rough lacunary statistical convergence, rough \(N_\theta \)-convergence, rough \(\lambda \)-statistical convergence and rough strong \((V,\lambda )\)-summable generalize the convergence analysis to accommodate any form of distribution of random variables. Among these six concepts in probability only three convergences are distinct- rough statistical convergence, rough lacunary statistical convergence and rough \(\lambda \)-statistical convergence where rough strong Cesàro summable is equivalent to rough statistical convergence, rough \(N_\theta \)-convergence is equivalent to rough lacunary statistical convergence, rough strong \((V,\lambda )\)-summable is equivalent to rough \(\lambda \)-statistical convergence. Basic properties and interrelations of above mentioned three distinct convergences are investigated and make some observations about these classes and in this way we show that rough statistical convergence in probability is the more generalized concept than usual rough statistical convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aytar, S.: Rough statistical convergence. Numer. Funct. Anal. Optimiz. 29(34), 291–303 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aytar, S.: The rough limit set and the core of a real sequence. Numer. Funct. Anal. Optimiz. 29(3–4), 283–290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aytar, S., Mammedov, M., Pehlivan, S.: Statistical limit inferior and limit superior for sequence of fuzzy nymber. Fuzzy Sets Syst. 157, 241–244 (2006)

    Article  Google Scholar 

  4. Connor, S.J.: The statistical and strong \(p\)-Cesaro convergence sequence. Analysis 8, 47–63 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Das P, Dutta K, Karakaya V, Ghosal, S.: Some further generalizations of strong convergence in probabilistic metric space using ideals, abstract and applied analysis. 2013, Article ID 765060, p. 8. doi:10.1155/2013/765060

  6. Das P, Ghosal S, Som, S.: Statistical convergence of order \(\alpha \) in probability, Arab. J. Math. Sci. doi:10.1016/j.ajmsc.2014.06.002

  7. Das, P., Savas, E., Ghosal, S.: On generalization of certain summability methods using ideals. Appl. Math. Lett. 24, 1509–1514 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erd\(\ddot{\text{o}}\)s, P., Tenenbaum, G.: Sur les densities de certaines suites d’entiers. Proc. London. Math. Soc. 3(59), 417–438 (1989)

  9. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)

    MATH  MathSciNet  Google Scholar 

  10. Freedman, R.A., Sember, J.J., Raphael, M.: Some Cesàro-type summability space. Proc. London Math. Soc. 37(3), 508–520 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fridy, A.J.: On statistical convergence. Analysis 5, 301–313 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fridy, A.J., Khan, K.M.: Tauberian theorems via statistical convergence. J. Math. Anal. Appl. 228, 73–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fridy, A.J., Orhan, C.: Lacunary statistical convergence. Pac. J. Math. 160, 43–51 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gadjiev, D.A., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32, 129–138 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghosal, S.: Statistical convergence of a sequence of random variables and limit theorems. Appl. Math. 58(4), 423–437 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ghosal, S.: \({\cal I}\)-statistical convergence of a sequence of random variables in probability. Afr. Math. 25(3), 681–692 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ghosal, S.: \(S_\lambda \)-statistical convergence of a sequence of random variables. J. Egypt. Math. Soc. (2014). doi:10.1016/j.joems.03.007

  18. Ghosal, S.: Weighted statistical convergence of order \(\alpha \) and its applications. J. Egypt. Math. Soc. doi:10.1016/j.joems.2014.08.006

  19. Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: \({\cal I}\)-convergence and extremal \({\cal I}\)-limit points. Math. Slovaca 55, 443–464 (2005)

  20. Kostyrko, P., Mačaj, M., Šalát, T., Strauch, O.: On statistical limit points. Proc. Am. Math. Soc. 129, 2647–2654 (2001)

    Article  MATH  Google Scholar 

  21. Leindler, L.: \(\ddot{\text{ U }}\)ber die de la Vall\(\acute{\text{e}}\)e-Pousnsche summierbarkeit allgemeiner orthogonalreihe. Acta. Math. Acad. Sci. Hung. 16, 375–387 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, J.: Lacunary statistical cinvergence and inclusion properties between lacunary methods. Int. J. Math. Sci. 23(3), 175–180 (2000)

    Article  MATH  Google Scholar 

  23. Martinez, G.V., Torrubia, S.G., Blanc, T.C.: A statistical convergence application for the Hopfield networks. Info. Theo. Appl. 15(1), 84–88 (2008)

    Google Scholar 

  24. Mursaleen, M.: \(\lambda \)-statistical convergence. Math. Slovaca 50, 111–115 (2000)

    MATH  MathSciNet  Google Scholar 

  25. Pehlivan, S., Mamedov, A.M.: Statistical cluster points and turnpike. Optimization 48, 93–106 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Phu, X.H.: Rough convergence in normed linear spaces. Numer. Funct. Anal. Optimiz. 22, 201–224 (2001)

    Article  MathSciNet  Google Scholar 

  27. Phu, X.H.: Rough convergence in infinite dimensional normed space. Numer. Funct. Anal. Optimiz. 24, 285–301 (2002)

    MathSciNet  Google Scholar 

  28. Phu, X.H.: Rough continuity of linear operators. Numer. Funct. Anal. Optimiz. 23, 139–146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rohatgi, KV.: An introduction to probability theory and mathematical statistics, 2nd edn, Wiley Eastern Limited (2006)

  30. Šalát, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30, 139–150 (1980)

    MATH  MathSciNet  Google Scholar 

  31. Savas, E., Das, P.: A generalized statistical convergence via ideals. Appl. Math. Lett. 24, 826–830 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schonenberg, J.I.: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361–375 (1959)

    Article  Google Scholar 

  33. Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)

    MathSciNet  Google Scholar 

  34. Zygmund, A.: Trigonometric series, 2nd edn. Cambridge Univ. Press, Cambridge (1979)

    Google Scholar 

Download references

Acknowledgments

Thankful to respected referee for his/her careful reading of the paper and several valuable suggestions which has improved the quality and presentation of the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Ghosal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Ghosal, S. & Ghosh, A. Rough statistical convergence of a sequence of random variables in probability. Afr. Mat. 26, 1399–1412 (2015). https://doi.org/10.1007/s13370-014-0295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-014-0295-2

Keywords

Mathematics Subject Classification

Navigation