Skip to main content

Advertisement

Log in

Assessing the impact of temperature on malaria transmission dynamics

Afrika Matematika Aims and scope Submit manuscript

Abstract

A mathematical model to assess the impact of temperature on malaria transmission dynamics is explored and analysed. Threshold quantities of the model are determined and analysed. The model is shown to exhibit backward bifurcation. Analysis of the reproduction number suggests that increase in temperature to about \(32~{}^{\circ }\mathrm{C}\) has the potential to increase the epidemic. The burden of the disease increases with increase in temperature with an optimal temperature window of 30–\(32~{}^{\circ }\mathrm{C}\) for malaria transmission. However as temperatures approach \(40~{}^{\circ }\mathrm{C}\), infected human and mosquito populations decline to asymptotically low levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Malaria Report 2011 World Health Organisation, Geneva, p 278

  2. Intergovernmental Panel on Climate Change, 2007 Working Group III Fourth Assessment Report, IPCC. http://www.ipcc.ch/publicationsanddata/publicationsanddatareports.shtml

  3. Li, J.: Malaria model with stage-structured mosquitoes. Math. Biosci. Eng. 8(3), 753–768 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Abebe, A., Abebel, G., Tsegaye, W., Golassa, L.: Climatic variables and malaria transmission dynamics in Jimma town. South West Ethiopia, Parasites Vectors 4(30), 1–11 (2011)

    Google Scholar 

  5. Alonso, D, Bouma, M.J., Pascual, M.: Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc. R. Soc. B (2010)

  6. Craig, M.H., Snow, R.W., le Sueur, D.: A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999)

    Article  Google Scholar 

  7. Hoshen, M.B., Morse, A.P.: A model structure for estimating malaria risk. In: Environmental Change and Malaria Risk Global and Local Implications, pp. 41–50. Springer, Dordrecht (2005)

  8. Martens, W.J.M., Jetten, T.H., Focks, D.A.: Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997)

    Article  Google Scholar 

  9. Parham, P.E., Michael, E.: Modeling the Effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118(5), 620–626 (2010)

    Article  Google Scholar 

  10. Paaijmans, K.P., Cator, L.J., Thomas, M.B.: Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLOS one. 8(1), e55777 (2013)

    Article  Google Scholar 

  11. Rubel, F., Brugger, K., Hantel, M., Chvala-Mannsberger, S., Bakonyi, T., Weissenbo, H., Nowotny, N.: Explaining Usutu virus dynamics in Austria: Model development and calibration. Preventive Veterinary Medicine 85, 166186 (2008)

    Google Scholar 

  12. Martens, P., Niessen, L.W., Rotmans, J., et al.: Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103(5), 458–464 (1995)

    Article  Google Scholar 

  13. McDonald, G.: The epidemiology and control of malaria. Oxford University Press, London (1957)

    Google Scholar 

  14. Chiyaka, C., Tchuenche, J.M., Garira, W., Dube, S.: A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Appl. Math. Comput. (2007)

  15. Kbenesh, B., Yanzhao, C., Hee-Dae, K.: Optimal control of vector-borne diseases: treatment and prevention. Discr. Contin. Dyn. Syst. Ser. B 11(3), 1–11 (2009)

    Google Scholar 

  16. Diekmann, O., Heestterbeek, J.A.P., Metz, J.A.P.: On the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogenous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. van den Drissche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for the compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2005)

    Article  Google Scholar 

  18. McMichael, A.J.: Haines, pp. 78–86. Sloof, Kovats, Climate Change and Human Health, World Health Organization (1996)

  19. Shetty, P.: Climate Change and Insect-borne Disease: Facts and Figures–SciDev.Net. http://www.scidev.net/en/south-east-asia/features/climate-change-and-insect-borne-disease-facts-and-1.html

  20. Remais, J., Akullian, A., Ding, L., Seto, E.: Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread. J. R. Soc. Interface. 7(49), 1181–93 (2010)

    Article  Google Scholar 

  21. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361404 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and anonymous reviewers for the critical comments and suggestions which resulted in much improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Bhunu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngarakana-Gwasira, E.T., Bhunu, C.P. & Mashonjowa, E. Assessing the impact of temperature on malaria transmission dynamics. Afr. Mat. 25, 1095–1112 (2014). https://doi.org/10.1007/s13370-013-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-013-0178-y

Keywords

Navigation