Skip to main content
Log in

Experimental and Numerical Investigation on Flow and Scour Upstream of Pipe Intake Structures

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Intake structures are used to take the desired amount of water from moving or stagnant flow environments. Since the excessive sediment may cause damage to intakes, the amount of sediment in the diverted water should be controlled. Furthermore, the bed sediment layer may be eroded due to intake discharge, and this may cause stability problems. Therefore, it is important to determine the effects of different parameters such as sediment diameter, and the intake discharge and its position in the design process. Due to financial and time constraints, making model studies for all flow conditions regarding the intakes is not feasible. In the current research, characteristics of the scour upstream of a horizontal pipe intake were investigated through a computational fluid dynamics model for different intake discharges, positions, and sediment sizes. The volume of fluid method was utilized to determine if the cells were entirely filled with fluid, partially filled, or empty. Finite volume method was used to solve 3-D momentum and mass conservation equations. The numerical model was validated with experiments conducted in a rectangular channel for several flow and geometrical conditions. It was shown that the critical Shields number should be modified depending on flow and geometrical conditions. Vorticity and excess shear stress values were found to be effective in the development of scour hole. The agreement between numerical and experimental results was satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

A x, y, z :

Fractional areas in (x, y, z) directions

B :

Channel width

b 1 :

Intake distance to the left sidewall

b 2 :

Distance of the intake to the right sidewall

c :

Distance between the intake axis and the channel bottom

d :

Sediment grain diameter

d * :

Dimensionless sediment grain diameter

d 50 :

Median sediment diameter

D :

Intake diameter

f x, f y, f z :

Viscous acceleration in cartesian coordinates

F :

Volume flow function

F d :

Densimetric Froude number

g :

Acceleration due to gravity

G x, G y, G z :

Gravitational force in cartesian coordinates

h :

Free surface elevation

h m :

Maximum scour depth

h s :

Thickness of the bed-sediment layer

l :

Distance between the dead-end wall and the intake center

L m :

Maximum scour length

p :

Piezometric pressure

q b :

Sediment discharge per unit width

Q :

Discharge of the intake

R SOR :

Mass momentum source

t :

Time

u, v, w :

Velocity components

U :

Cross-section average velocity of approach flow

V :

Average velocity inside of the intake

V F :

Open volume ratio to flow

W m :

Maximum scour width

β MPM :

Empirical coefficient for bed-load transport approach

θ :

Local Shields coefficient

θ cr :

Critical Shields number

ρ s :

Sediment particle density

ρ w :

Density of water

τ :

Shear stress

τ cr :

Critical bed shear stress

v :

Kinematic viscosity

ϕ :

Bed load transport rate

Ω :

Vorticity

References

  1. Shammaa, Y.; Zhu, D.Z.; Rajaratnam, N.: Flow upstream of orifices and sluice gates. J. Hydraul. Eng. 131, 127–133 (2005). https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(127)

    Article  Google Scholar 

  2. Bryant, D.B.; Khan, A.A.; Aziz, N.M.: Investigation of flow upstream of orifices. J. Hydraul. Eng. 134, 98–104 (2008). https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(98)

    Article  Google Scholar 

  3. Powell, D.N.; Khan, A.A.: Scour upstream of a circular orifice under constant head. J. Hydraul. Res. 50, 28–34 (2012). https://doi.org/10.1080/00221686.2011.637821

    Article  Google Scholar 

  4. Emamgholizadeh, S.; Fathi-Moghdam, M.: Pressure flushing of cohesive sediment in large dam reservoirs. J. Hydrol. Eng. 19, 674–681 (2014). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000859

    Article  Google Scholar 

  5. Kamble, S.A.; Kunjeer, P.S.; Isaac, N.: Hydraulic model studies for estimating scour cone development during pressure flushing of reservoirs. ISH J. Hydraul. Eng. 24(3), 337–344 (2018). https://doi.org/10.1080/09715010.2017.1381577

    Article  Google Scholar 

  6. Keshavarzi, A.; Mohammadi, G.R.; Hamidifar, H.: Time evolution of scour hole and flow characteristics upstream of a flushing orifice. ISH J. Hydraul. Eng. 28, 199–206 (2022). https://doi.org/10.1080/09715010.2020.1734108

    Article  Google Scholar 

  7. Beiramipour, S.; Qaderi, K.; Rahimpour, M.; Ahmadi, M.M.; Kantoush, S.A.: Investigation of the impacts of submerged vanes on pressurized flushing in reservoirs. Iran J. Soil Water Res. 51, 2187–2201 (2020). https://doi.org/10.22059/IJSWR.2020.298442.668515

    Article  Google Scholar 

  8. Karmacharya, S.K.; Ruther, N.; Aberle, J.; Shrestha, S.M.; Bishwakarma, M.B.: Physical modelling of pressure flushing of sediment using lightweight materials. J. Appl. Water Eng. Res. 9, 251–263 (2021). https://doi.org/10.1080/23249676.2021.1919224

    Article  Google Scholar 

  9. Khanarmuei, M.R.; Rahimzadeh, M.R.K.; Kakuei, A.R.; Sarkardeh, H.: Effect of vortex formation on sediment transport at dual pipe intakes. Sadhana 41, 1055–1061 (2016). https://doi.org/10.1007/s12046-016-0531-6

    Article  Google Scholar 

  10. Powell, D.N.; Khan, A.A.: Flow field upstream of an orifice under fixed bed and equilibrium scour conditions. J. Hydraul. Eng. 141, 04014076 (2015). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000960

    Article  Google Scholar 

  11. Taştan, K.; Yıldırım, G.; Barbaros, E.: Effect of intake geometry on the velocity distribution upstream of intakes. Sadhana 47, 79 (2022). https://doi.org/10.1007/s12046-022-01845-y

    Article  Google Scholar 

  12. Sarkardeh, H.; Zarrati, A.R.; Jabbari, E.; Marosi, M.: Numerical simulation and analysis of flow in a reservoir in the presence of vortex. Eng. Appl. Comput. Fluid Mech. 8, 598–608 (2014). https://doi.org/10.1080/19942060.2014.11083310

    Article  Google Scholar 

  13. Aghajani, N.; Karami, H.; Sarkardeh, H.; Mousavi, S.F.: Experimental and numerical investigation on effect of trash rack on flow properties at power intakes. Z. Angew. Math. Mech. 100, e202000017 (2020). https://doi.org/10.1002/zamm.202000017

    Article  Google Scholar 

  14. Taştan, K.: Critical submergence for a horizontal pipe intake. Ain Shams Eng. J. 11, 933–938 (2020). https://doi.org/10.1016/j.asej.2020.02.010

    Article  Google Scholar 

  15. Kadhim, A.F.; Al Thamiry, H.A.: Computation of critical submergence depth to avoid surface vortices at vertical pumps intakes. J. Eng. 26(8), 59–68 (2020). https://doi.org/10.31026/j.eng.2020.08.05

    Article  Google Scholar 

  16. Taştan, K.: Critical submergence for isolated and dual rectangular intakes. Sadhana 41(4), 425–433 (2016). https://doi.org/10.1007/s12046-016-0474-y

    Article  Google Scholar 

  17. Rudolf, P.; Klas, R.: Numerical simulation of pump-intake vortices. EPJ Web of Conferences 92, 02077 (2015). https://doi.org/10.1051/epjconf/20159202077

    Article  Google Scholar 

  18. Guyot, G.; Maaloul, H.; Archer, A.: A Vortex modeling with 3D CFD. Advances in Hydroinformatics: SIMHYDRO 2012–New Frontiers of Simulation, 433–444 (2014). https://doi.org/10.1007/978-981-4451-42-0_35

  19. Taştan, K.; Erat, B.; Barbaros, E.; Eroğlu, N.: Flow boundary effects on scour characteristics upstream of pipe intakes. Ocean Eng. 278, 114343 (2023). https://doi.org/10.1016/j.oceaneng.2023.114343

    Article  Google Scholar 

  20. Shields, A. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, PhD Thesis, Technical University Berlin, (1936). (in German)

  21. Taha, N.; El-Feky, M.M.; El-Saiad, A.A.; Fathy, I.: Numerical investigation of scour characteristics downstream of blocked culverts. Alex. Eng. J. 59, 3503–3513 (2020). https://doi.org/10.1016/j.aej.2020.05.032

    Article  Google Scholar 

  22. Omara, H.; Elsayed, S.M.; Abdeelaal, G.M.; Abd-Elhamid, H.F.; Tawfik, A.: Hydromorphological numerical model of the local scour process around bridge piers. Arab. J. Sci. Eng. 44, 4183–4199 (2019). https://doi.org/10.1007/s13369-018-3359-z

    Article  Google Scholar 

  23. Movahedi, A.; Kavianpour, M.R.; Aminoroayaie, Y.O.: Evaluation and modeling scouring and sedimentation around downstream of large dams. Environ. Earth Sci. 77, 1–17 (2018). https://doi.org/10.1007/s12665-018-7487-2

    Article  Google Scholar 

  24. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S.: Numerical modelling of plunge pool scour evolution in non-cohesive sediments. Eng. Appl. Comput. Fluid Mech. 8(4), 477–487 (2014). https://doi.org/10.1080/19942060.2014.11083301

    Article  Google Scholar 

  25. Hager, W.H.; Oliveto, G.: Shields’ entrainment criterion in bridge hydraulics. J. Hydraul. Eng. 128, 538–542 (2002). https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(538)

    Article  Google Scholar 

  26. Madadi, M.R.; Rahimpour, M.; Qaderi, K.: Sediment flushing upstream of large orifices: an experimental study. Flow Meas. Instrum. 52, 180–189 (2016). https://doi.org/10.1016/j.flowmeasinst.2016.10.007

    Article  Google Scholar 

  27. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  Google Scholar 

  28. Flow Science. Flow-3d User Manual: V10.1; Flow Science, Inc.: Santa Fe, NM, USA, 2012.

  29. Hoffmann, K.A.; Chiang, S.T.: Computational fluid dynamics. Engineering Education System, Kansas (2000).

  30. Mastbergen, D.R.; Van Den Berg, J.H.: Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 50, 625–637 (2003). https://doi.org/10.1046/j.1365-3091.2003.00554.x

    Article  Google Scholar 

  31. Meyer-Peter, E.; Müller, R.: Formulas for bed-load transport. in IAHSR 2nd meeting, Stockholm, appendix 2, 1948

  32. Kayser, M.; Gabr, M.A.: Assessment of scour on bridge foundations by means of in situ erosion evaluation probe. Transp. Res. Rec. 2335, 72–78 (2013). https://doi.org/10.3141/2335-08

    Article  Google Scholar 

  33. Zhang, Q.; Zhou, X.L.; Wang, J.H.: Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 142, 625–638 (2017). https://doi.org/10.1016/j.oceaneng.2017.07.045

    Article  Google Scholar 

  34. Yu, P.; Hu, R.; Yang, J.; Liu, H.: Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng. 213, 107696 (2020). https://doi.org/10.1016/j.oceaneng.2020.107696

    Article  Google Scholar 

  35. Wei, G.; Brethour, J.; Grünzner, M.; Burnham, J.: Report sedimentation scour model. Flow Science Inc. Report 03–1–29 (2014)

Download references

Acknowledgements

The authors would like to thank IOG Engineering for their kind support with the Flow-3D software and Gazi University Academic Writing Application and Research Center for proofreading the article.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BE and EB. The first draft of the manuscript was written by KT, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kerem Taştan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors have no relevant financial or nonfinancial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erat, B., Barbaros, E. & Taştan, K. Experimental and Numerical Investigation on Flow and Scour Upstream of Pipe Intake Structures. Arab J Sci Eng 49, 5973–5987 (2024). https://doi.org/10.1007/s13369-023-08539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08539-5

Keywords

Navigation