Skip to main content

Advertisement

Log in

Effect of Waste Filler Materials and Recycled Waste Aggregates on the Production of Geopolymer Composites

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research, the performance of fly ash/GGBS geopolymer mortars made with different quarry waste powder as filler materials by substituting the fine recycled aggregate (RS) with different ratios. Also, it was evaluated based on mechanical, physical, freeze–thaw, and microstructural analysis. Limestone waste (L), marble waste (M), and basalt waste powder (B) were used as filler materials developing eco-friendly and economical geopolymer from industrial waste as a promising sustainable area of research. Strength properties, ultrasonic pulse velocity, physical properties, freeze–thaw, XRD, and SEM analysis of geopolymer samples were investigated. The results revealed that using waste filler materials together with recycled aggregate effectively improves the mechanical properties of geopolymer composites substituting three different filling materials affected water absorption positively, strength properties, and freeze–thaw results. Current findings point to a potential solution. Successful use of fly ash, slag, recycled aggregate, and quarry waste has been achieved. The output of the study is expected to result in effective and environmentally friendly management of recycled wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A.: Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142–161 (2013). https://doi.org/10.1016/j.jclepro.2012.10.049

    Article  Google Scholar 

  2. VanDeventer, J.S.J.; JohnProvis, L.; Duxson, P.: Technical and commercial progress in the adoption of geopolymer. cem. Miner. Eng. 29, 89–104 (2012). https://doi.org/10.1016/j.mineng.2011.09.009

    Article  Google Scholar 

  3. Ma, C.-K.; Zawawi Awang, A.; Omar, W.: Structural and material performance of geopolymer concrete: a review. Constr. Build. Mater. 186, 90–102 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.111

    Article  Google Scholar 

  4. Ziada, M.; Tammam, Y.; Erdem, S.; Lezcano, R.A.G.: Investigation of the mechanical, microstructure and 3D fractal analysis of nanocalcite-modified environmentally friendly and sustainable cementitious composites. Buildings 12(1), 36 (2022). https://doi.org/10.3390/buildings12010036

    Article  Google Scholar 

  5. PatrickMaier, L.; StephanDurham, A.: Beneficial use of recycled materials in concrete mixtures. Constr. Build. Mater. 29, 428–437 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.024

    Article  Google Scholar 

  6. Tran, V.Q.; Dang, V.Q.; Ho, LSi.: Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Constr. Build. Mater. 323, 126578 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126578

    Article  Google Scholar 

  7. Sunita, Effect of biomass Ash, foundry sand and recycled concrete aggregate over the strength aspects of the concrete, Materials Today: Proceedings 50 Part 5 2022 2044–2051 https://doi.org/10.1016/j.matpr.2021.09.405.

  8. Şahin, F.; Uysal, M.; Canpolat, O.; Aygörmez, Y.; Cosgun, T.; Dehghanpour, H.: Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr. Build. Mater. 301, 124113 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124113

    Article  Google Scholar 

  9. Zhang, N., et al.: On the incorporation of class f fly-ash to enhance the geopolymerization effects and splitting tensile strength of the gold mine tailings-based geopolymer. Constr. Build. Mater. 308, 125112 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125112

    Article  Google Scholar 

  10. Zhang, N.; Hedayat, A.; Sosa, H.G.; Tupa, N.; Morales, I.Y.; Loza, R.S.: Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: an experimental investigation considering the effects of class F fly ash additions. Ceram. Int. 47(22), 32382–32396 (2021)

    Article  Google Scholar 

  11. Zhou, W.; Shi, X.; Lu, X.; Qi, C.; Luan, B.; Liu, F.: The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand. Constr. Build. Mater. 253, 119193 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119193

    Article  Google Scholar 

  12. Koshy, N.; Dondrob, K.; Hu, L.; Wen, Q.; Meegoda, J.N.: Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Constr. Build. Mater. 206, 287–296 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.076

    Article  Google Scholar 

  13. Chakkor, O.; Altan, M.F.; Canpolat, O.: Elevated temperature, freezing-thawing and mechanical properties of limestone, marble, and basalt powders reinforced metakaolin-red mud-based geopolymer mortars. Iran. J. Sci. Technol. Trans. Civ. Eng. (2022). https://doi.org/10.1007/s40996-021-00797-3

    Article  Google Scholar 

  14. Shahrour, N.; Allouzi, R.: Shear behavior of captive- and short- column effects using different basalt aggregate contents. J. Build. Eng. 32, 101508 (2020). https://doi.org/10.1016/j.jobe.2020.101508

    Article  Google Scholar 

  15. Binici, H.; Yardim, Y.; Aksogan, O.; Resatoglu, R.; Dincer, A.; Karrpuz, A.: Durability properties of concretes made with sand and cement size basalt. Sustain. Mater. Technol. 23, 00145 (2020). https://doi.org/10.1016/j.susmat.2019.e00145

    Article  Google Scholar 

  16. Premkumar, R.; Hariharan, P.; Rajesh, S.: Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete. Mater. Today. Proc. (2022). https://doi.org/10.1016/j.matpr.2021.12.442

    Article  Google Scholar 

  17. Şahin, F.; Uysal, M.; Canpolat, O.: Systematic evaluation of the aggregate types and properties on metakaolin based geopolymer composites. Constr. Build. Mater. 278, 122414 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122414

    Article  Google Scholar 

  18. Venyite, P.; Makone, E.C.; Kaze, R.C., et al.: Effect of combined metakaolin and basalt powder additions to laterite-based geopolymers activated by rice husk ash (RHA)/NaOH solution. SILICON 14, 1643–1662 (2022). https://doi.org/10.1007/s12633-021-00950-7

    Article  Google Scholar 

  19. Ghorbani, S.; Mohammadi-Khatami, M.; Ghorbani, S.; Elmi, A.; Farzan, M.; Soleimani, V.; Negahban, M.; Tam, V.W.; Tavakkolizadeh, M.: Effect of magnetized water on the fresh, hardened and durability properties of mortar mixes with marble waste dust as partial replacement of cement. Constr. Build. Mater. 267, 121049 (2021)

    Article  Google Scholar 

  20. Tekin, I.: Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Constr. Build. Mater. 127, 607–617 (2016). https://doi.org/10.1016/j.conbuildmat.2016.10.038

    Article  Google Scholar 

  21. Khyaliya, R.K.; Kabeer, K.S.; Vyas, A.K.: Evaluation of strength and durability of lean mortar mixes containing marble waste. Constr. Build. Mater. 147, 598–607 (2017)

    Article  Google Scholar 

  22. Khodabakhshian, A.; Ghalehnovi, M.; De Brito, J.; Shamsabadi, E.A.: Durability performance of structural concrete containing silica fume and marble industry waste powder. J. clean. produc. 170, 42–60 (2018)

    Article  Google Scholar 

  23. Lim, Y.Y.; Pham, T.M.; Kumar, J.: Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies. Constr. Build. Mater. 283, 122795 (2021)

    Article  Google Scholar 

  24. Pedro Perez-Cortes, J.: Ivan escalante-garcia, alkali activated metakaolin with high limestone contents – Statistical modeling of strength and environmental and cost analyses. Cement Concr. Compos. 106, 103450 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103450

    Article  Google Scholar 

  25. Morsy, M.S.; Rashad, A.M.; Shoukry, H.; Mokhtar, M.M.: Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation. Constr. Build. Mater. 229, 117088 (2019)

    Article  Google Scholar 

  26. Jiang, Q.; Mu, S.: Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer. RILEM Bookseries. 10, 253–259 (2015). https://doi.org/10.1007/978-94-017-9939-3_31

    Article  Google Scholar 

  27. Cwirzen, A.; Provis, J.L.; Penttala, V.; Habermehl-Cwirzen, K.: The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr. Build. Mater. 66, 53–62 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.022

    Article  Google Scholar 

  28. Rakhimova, N.R.; Rakhimov, R.Z.; Naumkina, N.I.; Khuzin, A.F.; Osin, Y.N.: Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement. Cem. Concr. Compos. 72, 268–274 (2016)

    Article  Google Scholar 

  29. Aggregates for concrete, TS EN-706, 2009

  30. Standard test method for compressive strength of hydraulic cement mortars, ASTM C109/C109M, 2021

  31. Standard test method for flexural strength of hydraulic-cement mortars, ASTM C348–20, 2020

  32. Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM C-496, 2017

  33. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM C1585–20, 2020

  34. NgwemBayiha, B.; Billong, N.; Yamb, E.; Cyriaque Kaze, R.; Nzengwa, R.: Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 217, 28–35 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.058

    Article  Google Scholar 

  35. Sardinha, M.; de Brito, J.; Rodrigues, R.: Durability properties of structural concrete containing very fine aggregates of marble sludge. Constr. Build. Mater. 119, 45–52 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.071

    Article  Google Scholar 

  36. Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Zhihua, Ou.: A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures. Constr. Build. Mater. 181, 659–672 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.075

    Article  Google Scholar 

  37. Kore, S.D.; Vyas, A.K.: Impact of marble waste as coarse aggregate on properties of lean cement concrete. Case. Stud. Constr. Mater. 4, 85–92 (2016)

    Google Scholar 

  38. Vardhan, K.; Siddique, R.; Goyal, S.: Strength, permeation and micro-structural characteristics of concrete incorporating waste marble. Constr. Build. Mater. 203, 45–55 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.079

    Article  Google Scholar 

  39. Tammam, Y.; Uysal, M.; Canpolat, O.: Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar. Eur. J. Environ. Civ. Eng. (2021). https://doi.org/10.1080/19648189.2021.1925157

    Article  Google Scholar 

  40. Bayiha, B.N.; Billong, N.; Yamb, E.; Kaze, R.C.; Nzengwa, R.: Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 217, 28–35 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.058

    Article  Google Scholar 

  41. Embong, R.; Kusbiantoro, A.; Shafiq, N.; Nuruddin, M.F.: Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J. Clean. Product. 112(1), 816–822 (2016). https://doi.org/10.1016/j.jclepro.2015.06.058

    Article  Google Scholar 

  42. Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R.: Mechanical and thermal properties of lightweight geopolymer composites. Cement. Concr. Compos. 86, 266–272 (2018). https://doi.org/10.1016/j.cemconcomp.2017.11.016

    Article  Google Scholar 

  43. Pilehvar, S.; Szczotok, A.M.; FranciscoRodríguez, J.; Valentini, L.; Lanzón, M.; Pamies, R.; Kjøniksen, A.-L.: Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Constr. Build. Mater. 00, 94–103 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.057

    Article  Google Scholar 

  44. Allahverdi, A.; Abadi, M.M.; Hossain, K.M.; Lachemi, M.: Resistance of chemically-activated high phosphorous slag content cement against freeze–thaw cycles. Cold. Reg. Sci. Technol. 103, 107–114 (2014)

    Article  Google Scholar 

  45. Aygörmez, Y.; Canpolat, O.; Al-mashhadani, M.M.; Uysal, M.: Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr. Build. Mater. 235, 117502 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117502

    Article  Google Scholar 

  46. Al-mashhadani, M.M.; Canpolat, O.: Effect of various NaOH molarities and various filling materials on the behavior of fly ash based geopolymer composites. Constr. Build. Mater. 262, 120560 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120560

    Article  Google Scholar 

  47. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites? a reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005). https://doi.org/10.1021/cm050230i

    Article  Google Scholar 

  48. Uysal, M.; Al-mashhadani, M.M.; Aygörmez, Y.; Canpolat, O.: Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.034

    Article  Google Scholar 

  49. Zhang, Y.J.; Li, S.; Wang, Y.C.; Xu, D.L.: Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non. Cryst. Solids. 358(3), 620–624 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.11.006

    Article  Google Scholar 

  50. Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z.: A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures. Constr. Build. Mater. 181, 659–672 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.075

    Article  Google Scholar 

  51. Valcuende, M.; Parra, C.; Marco, E.; Garrido, A.; Martínez, E.; Cánoves, J.: Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater. 28(1), 122–128 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Faruk Kuranlı.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tammam, Y., Uysal, M., Canpolat, O. et al. Effect of Waste Filler Materials and Recycled Waste Aggregates on the Production of Geopolymer Composites. Arab J Sci Eng 48, 4823–4840 (2023). https://doi.org/10.1007/s13369-022-07230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07230-5

Keywords

Navigation