Skip to main content
Log in

TR-ICANet: A Fast Unsupervised Deep-Learning-Based Scheme for Unconstrained Ear Recognition

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, several deep learning schemes have been considered for recognizing ear print. However, deep-based schemes are known to be data-hungry and they may require a significant deal of time to perform features learning. In this work, we propose a simple yet efficient and computationally fast CNN-like network, which we refer to as TR-ICANet, for recognizing ear print. We demonstrate that TR-ICANet can achieve higher performance than that of CNN with actually a lower computational budget and processing time. Firstly, we suggest applying a CNN-based image normalization to reshape images into a unified format, where CNN is used to detect ear landmarks and PCA is applied for geometrical normalization of scale and pose. TR-ICANet starts with an unsupervised learning process to learn convolutional filters using Independent Component Analysis (ICA). Those filters are used as feature detectors for the input images. This is followed by binary hashing and block-wise histogramming processes to generate local image features. Then, a Tied-Rank (TR) normalization is applied to eliminate bursts among the output features. We consider a soft-max average fusion scheme, in which CNN-like and deep networks are incorporated to improve recognition outcomes. Experiments conducted on the public AWE database show that TR-ICANet outperforms several relevant methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guehairia, O.; et al.: Feature fusion via Deep Random Forest for facial age estimation. Neural Netw. 130, 238–252 (2020)

    Article  Google Scholar 

  2. Shi, Y.; et al.: Towards universal representation learning for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6817–6826 (2020)

  3. Pei, Z.; et al.: Face recognition via deep learning using data augmentation based on orthogonal experiments. Electronics 8(10), 1088 (2019)

    Article  Google Scholar 

  4. Zafar, U.; et al.: Face recognition with Bayesian convolutional networks for robust surveillance systems. EURASIP J. Image Video Process. 2019(1), 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  5. Yan, P.; Bowyer, K.W.: Biometric recognition using 3D ear shape. IEEE Trans. pattern Anal. Mach. Intell. 29(8), 1297–1308 (2007)

    Article  Google Scholar 

  6. Sforza, C.; et al.: Age-and sex-related changes in the normal human ear. For. Sci. Int. 187(1–3), 110-e1 (2009)

    Google Scholar 

  7. Nejati, H.; et al.: Wonder ears: identification of identical twins from ear images. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 1201–1204. IEEE (2012)

  8. Zhou, Y.; Zaferiou, S.: Deformable models of ears in-the-wild for alignment and recognition. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 626–633. IEEE (2017)

  9. Hassaballah, M.; Alshazly, H.A.; Ali, A.A.: Robust local oriented patterns for ear recognition. Multimedia Tools Appl. 79(41), 31183–31204 (2020)

    Article  Google Scholar 

  10. Omara, I.; et al.: A novel geometric feature extraction method for ear recognition. Expert Syst. Appl. 65, 127–135 (2016)

    Article  Google Scholar 

  11. Omara, I.; et al.: A novel approach for ear recognition: learning Mahalanobis distance features from deep CNNs. Mach. Vis. Appl. 32(1), 1–14 (2021)

    Article  Google Scholar 

  12. Priyadharshini, R.A.; Arivazhagan, S.; Arun, M.: A deep learning approach for person identification using ear biometrics. Appl. Intell. 51, 1–12 (2020)

    Google Scholar 

  13. Chan, T.-H.; et al.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kannala, J.; Rahtu, E.: Bsif: binarized statistical image features. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 1363–1366. IEEE (2012)

  15. Ivanov, M.: Comparison of PCA with ICA from data distribution perspective. Preprint arXiv:1709.10222 (2017)

  16. McIntosh, A.R.; Mišić, B.: Multivariate statistical analyses for neuroimaging data. Ann. Rev. Psychol. 64, 499–525 (2013)

    Article  Google Scholar 

  17. Ng, C.J.; Teoh, A.B.J.: DCTNet: a simple learning-free approach for face recognition. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2015, 761–768. IEEE (2015)

  18. Abaza, A.; et al.: A survey on ear biometrics. ACM Comput. Surv. (CSUR) 45(2), 1–35 (2013)

    Article  Google Scholar 

  19. Pflug, A.; Busch, C.: Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biom. 1(2), 114–129 (2012)

    Article  Google Scholar 

  20. Korichi, A.; et al.: Arabic handwriting recognition: Between handcrafted methods and deep learning techniques. In: 2020 21st International Arab Conference on Information Technology (ACIT), pp. 1–6. IEEE (2020)

  21. Benzaoui, A.; Hadid, A.; Boukrouche, A.: Ear biometric recognition using local texture descriptors. J. Electron. Imaging 23(5), 053008 (2014)

    Article  Google Scholar 

  22. Korichi, M.; Meraoumia, A.; Aiadi, K.: A small look at the ear recognition process using a Binarized Statistical Image Features (ML-BSIF)

  23. Ghoualmi, L.; Draa, A.; Chikhi, S.: An ear biometric system based on artificial bees and the scale invariant feature transform. Expert Syst. Appl. 57, 49–61 (2016)

    Article  Google Scholar 

  24. Birajadar, P.: Unconstrained ear recognition using deep scattering wavelet network. In: IEEE Bombay Section Signature Conference (IBSSC), 2019, 1–6. IEEE (2019)

  25. Hassaballah, M.; Alshazly, H.A.; Ali, A.A.: Ear recognition using local binary patterns: a comparative experimental study. Expert Syst. Appl. 118, 182–200 (2019)

    Article  Google Scholar 

  26. Mu, Z.; et al.: Shape and structural feature based ear recognition. In: Chinese Conference on Biometric Recognition, pp. 663–670. Springer (2004)

  27. Shailaja, D.; Gupta, P.: A simple geometric approach for ear recognition. In: 9th International Conference on Information Technology (ICIT’06), pp. 164–167. IEEE (2006)

  28. Alshazly, H.A.; et al.: Ear biometric recognition using gradient-based feature descriptors. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 435– 445. Springer (2018)

  29. Anwar, A.S.; Ghany, K.K.A.; Elmahdy, H.: Human ear recognition using geometrical features extraction. Procedia Comput. Sci. 65, 529–537 (2015)

    Article  Google Scholar 

  30. Chang, K.; et al.: Comparison and combination of ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1160–1165 (2003)

    Article  Google Scholar 

  31. Nanni, L.; Lumini, A.: Fusion of color spaces for ear authentication. Pattern Recognit. 42(9), 1906–1913 (2009)

    Article  MATH  Google Scholar 

  32. Kumar, A.; Wu, C.: Automated human identification using ear imaging. Pattern Recognit. 45(3), 956–968 (2012)

    Article  Google Scholar 

  33. Tariq, A.; Akram, M.U.: Personal identification using ear recognition. TELKOMNIKA Telecommun. Comput. Electron. Control 10(2), 321–326 (2012)

    Google Scholar 

  34. Zhang, B.; et al.: Robust classification for occluded ear via Gabor scale feature-based nonnegative sparse representation. Opt. Eng. 53(6), 061702 (2013)

    Article  Google Scholar 

  35. Goel, A.K.; et al.: Profit or Loss: A Long Short Term Memory based model for the Prediction of share price of DLF group in India. In: 2019 IEEE 9th International Conference on Advanced Computing (IACC), pp. 120–124. IEEE (2019)

  36. Agarwal, M.: A convolution neural network based approach to detect the disease in corn crop. In: IEEE 9th International Conference on Advanced Computing (IACC), 2019, 176–181. IEEE (2019)

  37. Sethi, K.; Jaiswal, V.; Ansari, M.D.: Machine learning based support system for students to select stream (subject). Recent Adv. Comput. Sci. Commun. (Formerly Recent Patents Comput. Sci.) 13(3), 336–344 (2020)

    Article  Google Scholar 

  38. Dodge, S.; Mounsef, J.; Karam, L.: Unconstrained ear recognition using deep neural networks. IET Biom. 7(3), 207–214 (2018)

    Article  Google Scholar 

  39. Alshazly, H.; et al.: Ensembles of deep learning models and transfer learning for ear recognition. Sensors 19(19), 4139 (2019)

    Article  Google Scholar 

  40. Khaldi, Y.; Benzaoui, A.: A new framework for grayscale ear images recognition using generative adversarial networks under unconstrained conditions. In: Evolving Systems, pp. 1–12 (2020)

  41. Khaldi, Y.; et al.: Ear recognition based on deep unsupervised active learning. In: IEEE Sens. J. (2021)

  42. Mewada, H.K.; et al.: Wavelet features embedded convolutional neural network for multiscale ear recognition. J. Electron. Imaging 29(4), 043029 (2020)

    Article  Google Scholar 

  43. Kamboj, A.; Rani, R.; Nigam, A.: A comprehensive survey and deep learning-based approach for human recognition using ear biometric. In: The Visual Computer, pp. 1–34 (2021)

  44. Alshazly, H.; et al.: Towards explainable ear recognition systems using deep residual networks. In: IEEE Access (2021)

  45. Benzaoui, A.; Kheider, A.; Boukrouche, A.: Ear description and recognition using ELBP and wavelets. In: 2015 International Conference on Applied Research In Computer Science And Engineering (Icar), pp. 1–6. IEEE (2015)

  46. Ying, T.; Debin, Z.; Baihuan, Z.: Ear recognition based on weighted wavelet transform and DCT. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 4410–4414. IEEE (2014)

  47. Morales, A.; et al.: Earprint recognition based on an ensemble of global and local features. In: 2015 International Carnahan Conference on Security Technology (ICCST), pp. 253–258. IEEE (2015)

  48. Sajadi, S.; Fathi, A.: Genetic algorithm based local and global spectral features extraction for ear recognition. Expert Syst. Appl. 159, 113639 (2020)

    Article  Google Scholar 

  49. Hansley, E.E.; Segundo, M.P.; Sarkar, S.: Employing fusion of learned and handcrafted features for unconstrained ear recognition. IET Biom. 7(3), 215–223 (2018)

    Article  Google Scholar 

  50. Geng, T.; et al.: Unsupervised feature learning with single layer ICANet for face recognition. Sens. Imaging 19(1), 1–10 (2018)

    Article  Google Scholar 

  51. Zhang, Y.; et al.: ICANet: a simple cascade linear convolution network for face recognition. EURASIP J. Image Video Process. 2018(1), 1–7 (2018)

    Article  Google Scholar 

  52. Hyvärinen, A.; Hurri, J.O.; Hoyer, P.: Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, vol. 39. Springer (2009)

  53. Emeršič, Ž; Štruc, V.; Peer, P.: Ear recognition: more than a survey. Neurocomputing 255, 26–39 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aicha Korichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korichi, A., Slatnia, S. & Aiadi, O. TR-ICANet: A Fast Unsupervised Deep-Learning-Based Scheme for Unconstrained Ear Recognition. Arab J Sci Eng 47, 9887–9898 (2022). https://doi.org/10.1007/s13369-021-06375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06375-z

Keywords

Navigation